Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 624(7990): 86-91, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030721

RESUMO

To close the gap between the rates of computational screening and experimental realization of novel materials1,2, we introduce the A-Lab, an autonomous laboratory for the solid-state synthesis of inorganic powders. This platform uses computations, historical data from the literature, machine learning (ML) and active learning to plan and interpret the outcomes of experiments performed using robotics. Over 17 days of continuous operation, the A-Lab realized 41 novel compounds from a set of 58 targets including a variety of oxides and phosphates that were identified using large-scale ab initio phase-stability data from the Materials Project and Google DeepMind. Synthesis recipes were proposed by natural-language models trained on the literature and optimized using an active-learning approach grounded in thermodynamics. Analysis of the failed syntheses provides direct and actionable suggestions to improve current techniques for materials screening and synthesis design. The high success rate demonstrates the effectiveness of artificial-intelligence-driven platforms for autonomous materials discovery and motivates further integration of computations, historical knowledge and robotics.

2.
Inorg Chem ; 63(29): 13576-13584, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38981128

RESUMO

With increasing battery demand comes a need for diversified Li sources beyond brines. Among all Li-bearing minerals, spodumene is most often used for its high Li content and natural abundance. However, the traditional approach to process spodumene is costly and energy-intensive, requiring the mineral be transformed from its natural α to ß phase at >1000 °C. Acid leaching is then applied, followed by neutralization to precipitate Li2CO3. In this work, we report an alternative method to extract Li directly from α-spodumene, which is performed at lower temperatures and avoids the use of acids. It is shown that Li2CO3 is formed with >90% yield at 750 °C by reacting α-spodumene with Na2CO3 and Al2O3. The addition of Al2O3 is critical to reduce the amount of Li2SiO3 that forms when only Na2CO3 is used, instead providing increased thermodynamic driving force to form NaAlSiO4 and Li2CO3 as the sole products. We find that this reaction is most effective at 4 h, after which volatility limits the yield. Following its extraction, Li2CO3 can be isolated by washing the sample using deionized water. This energy-saving and acid-free route to obtain Li2CO3 directly from spodumene can help meet the growing demand for Li.

3.
Phys Rev Lett ; 123(23): 236402, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868440

RESUMO

Using a first-principles approach, we design the heteroanionic oxynitride MoON to exhibit a first-order isosymmetric thermally activated Peierls-type metal-insulator transition (MIT). We identify a ground state insulating phase (α-MoON) with monoclinic Pc symmetry and a metastable high temperature metallic phase (ß-MoON) of equivalent symmetry. We find that ordered fac-MoO_{3}N_{3} octahedra with edge and corner connectivity stabilize the twisted Mo-Mo dimers present in the α phase, which activate the MIT through electron localization within the 4d a_{1g} manifold. By analyzing the temperature dependence of the soft zone-boundary instability driving the MIT, we estimate an ordering temperature T_{MIT}∼900 K. Our work shows that electronic transitions can be designed by exploiting multiple anions, and heteroanionic materials could offer new insights into the microscopic electron-lattice interactions governing unresolved transitions in homoanionic oxides.

4.
Sci Adv ; 10(3): eadj5431, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232170

RESUMO

Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions. This framework presents reaction energy as a rarely used handle for polymorph selection, which influences the role of surface energy in promoting the nucleation of metastable phases. Through in situ characterization and density functional theory calculations on two distinct synthesis pathways targeting LiTiOPO4, we demonstrate how precursor selection and its effect on reaction energy can effectively be used to control which polymorph is obtained from solid-state synthesis. A general approach is outlined to quantify the conditions under which metastable polymorphs are experimentally accessible. With comparison to historical data, this approach suggests that using appropriate precursors could enable targeted materials synthesis across diverse chemistries through selective polymorph nucleation.

5.
Sci Adv ; 10(27): eadp3309, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959320

RESUMO

The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli-electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.

6.
Nat Commun ; 14(1): 6956, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907493

RESUMO

Solid-state synthesis plays an important role in the development of new materials and technologies. While in situ characterization and ab-initio computations have advanced our understanding of materials synthesis, experiments targeting new compounds often still require many different precursors and conditions to be tested. Here we introduce an algorithm (ARROWS3) designed to automate the selection of optimal precursors for solid-state materials synthesis. This algorithm actively learns from experimental outcomes to determine which precursors lead to unfavorable reactions that form highly stable intermediates, preventing the target material's formation. Based on this information, ARROWS3 proposes new experiments using precursors it predicts to avoid such intermediates, thereby retaining a larger thermodynamic driving force to form the target. We validate this approach on three experimental datasets, containing results from over 200 synthesis procedures. In comparison to black-box optimization, ARROWS3 identifies effective precursor sets for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of domain knowledge in optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms.

7.
Mater Horiz ; 8(8): 2169-2198, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846423

RESUMO

Autonomous experimentation driven by artificial intelligence (AI) provides an exciting opportunity to revolutionize inorganic materials discovery and development. Herein, we review recent progress in the design of self-driving laboratories, including robotics to automate materials synthesis and characterization, in conjunction with AI to interpret experimental outcomes and propose new experimental procedures. We focus on efforts to automate inorganic synthesis through solution-based routes, solid-state reactions, and thin film deposition. In each case, connections are made to relevant work in organic chemistry, where automation is more common. Characterization techniques are primarily discussed in the context of phase identification, as this task is critical to understand what products have formed during synthesis. The application of deep learning to analyze multivariate characterization data and perform phase identification is examined. To achieve "closed-loop" materials synthesis and design, we further provide a detailed overview of optimization algorithms that use active learning to rationally guide experimental iterations. Finally, we highlight several key opportunities and challenges for the future development of self-driving inorganic materials synthesis platforms.


Assuntos
Inteligência Artificial , Robótica , Algoritmos , Automação , Técnicas de Química Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA