Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766810

RESUMO

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas Nucleares/genética , Fosfotransferases/genética , Splicing de RNA , RNA de Transferência/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Linhagem , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
PLoS Genet ; 19(6): e1010796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315079

RESUMO

Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.


Assuntos
Cílios , Ciliopatias , Humanos , Animais , Camundongos , Cílios/genética , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas/genética , Aminoácidos/metabolismo , Mamíferos/metabolismo , Proteínas do Citoesqueleto/genética
3.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531627

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Assuntos
Síndrome de Ellis-Van Creveld , Linhagem , Fenótipo , Humanos , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/patologia , Masculino , Feminino , Criança , Proteínas de Membrana/genética , Mutação , Pré-Escolar , Proteína Gli3 com Dedos de Zinco/genética , Adolescente , Adulto , Proteínas do Tecido Nervoso/genética , Estudos de Coortes , Lactente , Proteínas/genética , Estudos Retrospectivos , Peptídeos e Proteínas de Sinalização Intercelular
4.
Am J Med Genet A ; 194(8): e63635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38634625

RESUMO

Mucopolysaccharidosis type 10 is caused by biallelic variants in ARSK, which encodes for a lysosomal sulfatase. To date, seven patients with a mild phenotype resembling spondyloepiphyseal dysplasia or multiple epiphyseal dysplasia have been described. In this report, we present two novel ARSK variants and report clinical and radiological findings of three patients. The patients' initial complaints were hip or knee pain and a waddling gait. All patients showed normal intelligence, normal hearing and eye examinations, and none had organomegaly. While typical dysostosis multiplex findings were not observed, mild platyspondyly with anterior beaking of some vertebral bodies, irregular vertebral endplates, wide ribs, inferior tapering of the ilea with a poorly developed acetabulum, irregularity of the central part of the femoral head, delayed ossification of the carpals were noted. Remarkably, all patients showed metaphyseal striation of the long bones, a crucial diagnostic clue to identify ARSK-related MPS type 10. Interestingly, vertebral involvement regressed during follow-up. On the other hand, hip dysplasia progressed in all patients. In conclusion, this study provides valuable long-term results on a recently discovered form of MPS.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Criança , N-Acetilgalactosamina-4-Sulfatase/genética , Adolescente , Mutação/genética , Pré-Escolar , Radiografia , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/diagnóstico por imagem
5.
Am J Med Genet A ; 194(6): e63533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234231

RESUMO

Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.


Assuntos
Lipodistrofia Generalizada Congênita , Proteínas de Ligação a RNA , Humanos , Masculino , Feminino , Lipodistrofia Generalizada Congênita/genética , Lipodistrofia Generalizada Congênita/complicações , Lipodistrofia Generalizada Congênita/patologia , Adolescente , Criança , Lactente , Pré-Escolar , Adulto , Adulto Jovem , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/patologia
6.
J Med Genet ; 60(8): 819-826, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36543534

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders characterised by susceptibility to fractures, primarily due to defects in type 1 collagen. The aim of this study is to present a novel OI phenotype and its causative candidate gene. METHODS: Whole-exome sequencing and clinical evaluation were performed in five patients from two unrelated families. PHLDB1 mRNA expression in blood and fibroblasts was investigated by real-time PCR, and western blot analysis was further performed on skin fibroblasts. RESULTS: The common findings among the five affected children were recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. We identified biallelic NM_001144758.3:c.2392dup and NM_001144758.3:c.2690_2693del pathogenic variants in PHLDB1 in the affected patients, respectively, in the families; parents were heterozygous for these variants. PHLDB1 encodes pleckstrin homology-like domain family B member-1 (PHLDB1) protein, which has a role in insulin-dependent Akt phosphorylation. Compared with controls, a decrease in the expression levels of PHLDB1 in the blood and skin fibroblast samples was detected. Western blot analysis of cultured fibroblasts further confirmed the loss of PHLDB1. CONCLUSION: Two biallelic frameshift variants in the candidate gene PHLDB1 were identified in independent families with a novel, mild-type, autosomal recessive OI. The demonstration of decreased PHLDB1 mRNA expression levels in blood and fibroblast samples supports the hypothesis that PHLDB1 pathogenic variants are causative for the observed phenotype.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Humanos , Pré-Escolar , Osteogênese Imperfeita/genética , Heterozigoto , Fenótipo , Mutação da Fase de Leitura/genética , Colágeno Tipo I/genética , Mutação , Proteínas do Tecido Nervoso/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
7.
Fetal Diagn Ther ; 51(3): 285-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346409

RESUMO

INTRODUCTION: Counseling osteogenesis imperfecta (OI) pregnancies is challenging due to the wide range of onsets and clinical severities, from perinatal lethality to milder forms detected later in life. METHODS: Thirty-eight individuals from 36 families were diagnosed with OI through prenatal ultrasonography and/or postmortem clinical and radiographic findings. Genetic analysis was conducted on 26 genes associated with OI in these subjects that emerged over the past 20 years; while some genes were examined progressively, all 26 genes were examined in the group where no pathogenic variations were detected. RESULTS: Prenatal and postnatal observations both consistently showed short limbs in 97%, followed by bowing of the long bones in 89%. Among 32 evaluated cases, all exhibited cranial hypomineralization. Fractures were found in 29 (76%) cases, with multiple bones involved in 18 of them. Genetic associations were disclosed in 27 families with 22 (81%) autosomal dominant and five (19%) autosomal recessive forms, revealing 25 variants in six genes (COL1A1, COL1A2, CREB3L1, P3H1, FKBP10, and IFITM5), including nine novels. Postmortem radiological examination showed variability in intrafamily expression of CREBL3- and P3H1-related OI. CONCLUSION: Prenatal diagnosis for distinguishing OI and its subtypes relies on factors such as family history, timing, ultrasound, genetics, and postmortem evaluation.


Assuntos
Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/diagnóstico por imagem , Feminino , Gravidez , Ultrassonografia Pré-Natal , Cadeia alfa 1 do Colágeno Tipo I , Proteínas de Ligação a Tacrolimo/genética , Masculino , Colágeno Tipo I/genética , Autopsia , Prolil Hidroxilases/genética , Adulto , Glicoproteínas de Membrana , Proteínas de Membrana , Proteoglicanas
8.
J Pediatr ; 252: 93-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067876

RESUMO

OBJECTIVE: To describe the clinical presentation and long-term clinical features of a molecularly confirmed cohort with Cohen syndrome. STUDY DESIGN: Twelve patients with Cohen syndrome aged 0.2-13.9 years from 8 families with a median follow-up of 7 years were enrolled to the study. Genetic analyses were made by VPS13B and whole-exome sequencing analyses. RESULTS: Biallelic VPS13B variants, including 3 nonsense, 1 frameshift, and 1 splice-site variant, and a multiexon deletion were detected. Prader-Willi syndrome-like features such as hypotonia, small hands, round face with full cheeks, almond-shaped eyes, and micrognathia were observed in all infantile patients. Beginning from age 4 years, it was noticed that the face gradually elongated and became oval. The typical facial features of Cohen syndrome such as a long face, beak-shaped nose, and open-mouth appearance with prominent upper central incisors became evident at age 9. Other Cohen syndrome features including retinopathy (11/11), neutropenia (11/12), truncal obesity (5/12), and myopia (5/11) were detected at the median ages of 7.8, 7, 7.5, and 5 years, respectively. Eleven patients aged older than 5 years at their last examination had severe speech delay. CONCLUSIONS: A differential diagnosis of Cohen syndrome in the infancy should be made with Prader-Willi syndrome, and that the typical facial features for Cohen syndrome is prominent at age 9 years, when retinopathy, neutropenia, and truncal obesity become evident. Moreover, adding the severe speech delay to the diagnostic criteria should be considered.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Microcefalia , Miopia , Neutropenia , Síndrome de Prader-Willi , Degeneração Retiniana , Humanos , Criança , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Proteínas de Transporte Vesicular/genética , Microcefalia/diagnóstico , Microcefalia/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Degeneração Retiniana/genética , Miopia/diagnóstico , Miopia/genética , Obesidade/diagnóstico , Obesidade/genética
9.
Clin Genet ; 103(5): 574-579, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36504352

RESUMO

Acromesomelic dysplasias (AMD) are a group of skeletal dysplasia characterized by shortening of the middle and distal segments of the limbs. Recently, biallelic PRKG2 variants have been reported to cause a new type of AMD. We detected biallelic novel variant (c.1635-1G > C) in PRKG2 in two brothers with mild to severe short stature, short limbs, cubitus varus, and brachydactyly. Radiological examination showed platyspondyly with anterior beaking of the vertebral bodies, stubby long bones with metaphyseal flaring and moderate brachydactyly with cone-shaped epiphyses of the middle and proximal phalanges. Upper limb proportions of the older brother were clinically classified as rhizomelic, however radiologic findings supported acromesomelia, along with the elbow limitation. Annual follow-ups of the older brother from the age of 5 to 20 years revealed progression of short stature with age but platyspondyly and anterior beaking became less conspicuous. The younger brother showed milder short stature and less conspicuous disproportion of the limbs than those of the older brother; however, platyspondyly and anterior beaking were more prominent on the radiographs obtained at the same age. In conclusion, this report provides new insights into the natural history of AMD type PRKG2 confirming the intrafamilial heterogeneity.


Assuntos
Braquidactilia , Osteocondrodisplasias , Adolescente , Criança , Pré-Escolar , Humanos , Masculino , Adulto Jovem , Proteína Quinase Dependente de GMP Cíclico Tipo II , Osteocondrodisplasias/diagnóstico , Irmãos , Extremidade Superior
10.
Am J Med Genet A ; 191(2): 617-623, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326140

RESUMO

Gillessen-Kaesbach-Nishimura syndrome (GIKANIS) is a congenital disease of glycosylation (CDG) linked to the ALG9 gene. GIKANIS is a lethal disorder characterized by atypical facial features, generalized skeletal changes with shortening of the long bones with broad, round metaphyses, round ilia, and deficient ossification of the skull, cervical spine and pubic bones, and visceral abnormalities including polycystic kidneys and congenital cardiac defects. GIKANIS is caused by a homozygous splicing variant (c.1173 + 2 T > A) leading to skipping of exon 10, frameshift, and premature termination codon of the ALG9 gene. To our best knowledge, only two affected families with confirmed molecular analyses have been reported. We present an additional report on two siblings with the same mutation, emphasizing the prenatal ultrasonographic features. Their facial and skeletal manifestations recapitulated those previously reported. Ultrasonography revealed polycystic kidneys and unbalanced atrioventricular septal defect (AVSD) with transposition of the great arteries.


Assuntos
Rim Policístico Autossômico Recessivo , Transposição dos Grandes Vasos , Gravidez , Feminino , Humanos , Turquia , Mutação , Feto/diagnóstico por imagem
11.
Am J Med Genet A ; 191(6): 1530-1545, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36919607

RESUMO

Overgrowth-intellectual disability (OGID) syndromes are clinically and genetically heterogeneous group of disorders. The aim of this study was to examine the molecular etiology and long-term follow-up findings of Turkish OGID cohort. Thirty-five children with OGID were included in the study. Single gene sequencing, clinical exome analysis, chromosomal microarray analysis and whole exome sequencing were performed. Five pathogenic copy number variants were detected in the patients; three of them located on chromosome 5q35.2 (encompassing NSD1), others on 9q22.3 and 22q13.31. In 19 of 35 patients; we identified pathogenic variants in OGID genes associated with epigenetic regulation, NSD1 (n = 15), HIST1H1E (n = 1), SETD1B (n = 1), and SUZ12 (n = 2). The pathogenic variants in PIK3CA (n = 2), ABCC9 (n = 1), GPC4 (n = 2), FIBP (n = 1), and TMEM94 (n = 1) which had a role in other growth pathways were detected in seven patients. The diagnostic yield was 31/35(88%). Twelve pathogenic variants were novel. The common facial feature of the patients was prominent forehead. The patients with Sotos syndrome were observed to have milder intellectual disability than patients with other OGID syndromes. In conclusion, this study showed, for the first time, that biallelic variants of SUZ12 caused Imagawa-Matsumoto syndrome, monoallelic variants in SETDIB resulted in OGID. Besides expanded the phenotypes of very rare OGID syndromes caused by FIBP and TMEM94.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Epigênese Genética , Seguimentos , Histonas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas de Neoplasias/genética , Fenótipo , Fatores de Transcrição/genética , Criança
12.
Am J Med Genet A ; 191(7): 1814-1825, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37053206

RESUMO

Koolen-de Vries syndrome (KdVS) is a rare multisystemic disorder caused by a microdeletion on chromosome 17q21.31 including KANSL1 gene or intragenic pathogenic variants in KANSL1 gene. Here, we describe the clinical and genetic spectrum of eight Turkish children with KdVS due to a de novo 17q21.31 deletion, and report on several rare/new conditions. Eight patients from unrelated families aged between 17 months and 19 years enrolled in this study. All patients evaluated by a clinical geneticist, and the clinical diagnosis were confirmed by molecular karyotyping. KdVS patients had some common distinctive facial features. All patients had neuromotor retardation, and speech and language delay. Epilepsy, structural brain anomalies, ocular, ectodermal, and musculoskeletal findings, and friendly personality were remarkable in more than half of the patients. Hypertension, hypothyroidism, celiac disease, and postaxial polydactyly were among the rare/new conditions. Our study contributes to the clinical spectrum of patients with KdVS, while also provide a review by comparing them with previous cohort studies.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deleção Cromossômica , Doenças Raras/genética , Fenótipo , Cromossomos Humanos Par 17/genética
13.
Diabetes Obes Metab ; 25(7): 1950-1963, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946378

RESUMO

AIM: To describe the Turkish generalized lipodystrophy (GL) cohort with the frequency of each complication and the death rate during the period of the follow-up. METHODS: This study reports on 72 patients with GL (47 families) registered at different centres in Turkey that cover all regions of the country. The mean ± SD follow-up was 86 ± 78 months. RESULTS: The Kaplan-Meier estimate of the median time to diagnosis of diabetes and/or prediabetes was 16 years. Hyperglycaemia was not controlled in 37 of 45 patients (82.2%) with diabetes. Hypertriglyceridaemia developed in 65 patients (90.3%). The Kaplan-Meier estimate of the median time to diagnosis of hypertriglyceridaemia was 14 years. Hypertriglyceridaemia was severe (≥ 500 mg/dl) in 38 patients (52.8%). Seven (9.7%) patients suffered from pancreatitis. The Kaplan-Meier estimate of the median time to diagnosis of hepatic steatosis was 15 years. Liver disease progressed to cirrhosis in nine patients (12.5%). Liver disease was more severe in congenital lipodystrophy type 2 (CGL2). Proteinuric chronic kidney disease (CKD) developed in 32 patients (44.4%) and cardiac disease in 23 patients (31.9%). Kaplan-Meier estimates of the median time to diagnosis of CKD and cardiac disease were 25 and 45 years, respectively. Females appeared to have a more severe metabolic disease, with an earlier onset of metabolic abnormalities. Ten patients died during the follow-up period. Causes of death were end-stage renal disease, sepsis (because of recurrent intestinal perforations, coronavirus disease, diabetic foot infection and following coronary artery bypass graft surgery), myocardial infarction, heart failure because of dilated cardiomyopathy, stroke, liver complications and angiosarcoma. CONCLUSIONS: Standard treatment approaches have only a limited impact and do not prevent the development of severe metabolic abnormalities and early onset of organ complications in GL.


Assuntos
Diabetes Mellitus , Hipertrigliceridemia , Lipodistrofia Generalizada Congênita , Lipodistrofia , Infarto do Miocárdio , Insuficiência Renal Crônica , Feminino , Humanos , Turquia/epidemiologia , Estudos de Coortes , Infarto do Miocárdio/complicações , Insuficiência Renal Crônica/complicações , Estimativa de Kaplan-Meier , Hipertrigliceridemia/complicações
14.
Kidney Int ; 101(5): 1039-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227688

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.


Assuntos
Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Criança , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Proteínas Roundabout
15.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31230720

RESUMO

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Assuntos
Artrogripose/genética , Artrogripose/patologia , Variações do Número de Cópias de DNA , Marcadores Genéticos , Genômica/métodos , Herança Multifatorial/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Conectina/genética , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma , Adulto Jovem
16.
J Hum Genet ; 67(9): 553-556, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35338243

RESUMO

Heterozygous mutations in Bicaudal D2 Drosophila homolog 2 (BICD2) gene, encodes a vesicle transport protein involved in dynein-mediated movement along microtubules, are responsible for an exceedingly rare autosomal dominant spinal muscular atrophy type 2A which starts in the childhood and predominantly effects lower extremities. Recently, a more severe form, type 2B, has also been described. Here, we present a patient born to a consanguineous union and who suffered from intellectual disability, speech delay, epilepsy, happy facial expression, truncal obesity with tappering fingers, and joint hypermobility. Whole-exome sequencing analysis revealed a rare, homozygous missense mutation (c.731T>C; p.Leu244Pro) in BICD2 gene. This finding presents the first report in the literature for homozygous BICD2 mutations and its association with a Cohen-Like syndrome. Patients presenting with Cohen-Like phenotypes should be further interrogated for mutations in BICD2.


Assuntos
Deficiência Intelectual , Atrofia Muscular Espinal , Genes Dominantes , Humanos , Deficiência Intelectual/genética , Proteínas Associadas aos Microtúbulos/genética , Atrofia Muscular Espinal/genética , Mutação , Mutação de Sentido Incorreto
17.
Rheumatology (Oxford) ; 61(9): 3693-3703, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34919662

RESUMO

OBJECTIVES: Progressive pseudorheumatoid dysplasia (PPRD) is a spondyloepiphyseal dysplasia caused by biallelic variants in CCN6. This study aimed to describe the early signs and follow-up findings in 44 Turkish PPRD patients. METHODS: The patients with progressive stiffness of multiple joints, characteristic wide metaphysis of interphalangeal (IP) joints and platyspondyly were clinically diagnosed with PPRD. Fifteen patients who had first symptoms under 3 years of age were grouped as early-onset, while others were grouped as classical. CCN6 sequencing was performed in 43 patients. RESULTS: Thirteen pathogenic/likely pathogenic variants were identified, five were novel. c.156C>A(p.Cys52*) variant was found in 53.3% of the families. The initial symptom in the early-onset group was genu varum deformity, while it was widening of IP joints in the classical group. The median age of onset of symptoms and of diagnosis was 4 and 9.7 years, respectively. The mean follow-up duration was 5.6 years. The median age of onset of IP, elbow, knee and hip stiffness, which became progressive with growth was 5, 9, 9 and 12.2 years, respectively. Waddling gait occurred in 97.7% of the patients. A total of 47.7% lost independent walking ability at the median age of 12 years. In the early-onset group, waddling gait occurred earlier than in classical group (P < 0.001). Two patients had atypical presentation with late-onset and mild or lack of IP involvement. CONCLUSION: We observed that genu varum deformity before the age of 3 years was an early sign for PPRD and almost half of the patients lost walking ability at the median age of 12 years.


Assuntos
Genu Varum , Artropatias , Proteínas de Sinalização Intercelular CCN , Criança , Pré-Escolar , Seguimentos , Humanos , Artropatias/congênito , Artropatias/diagnóstico , Artropatias/genética
18.
Clin Genet ; 101(3): 346-358, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964109

RESUMO

Recessive mutations in the genes encoding the four subunits of the tRNA splicing endonuclease complex (TSEN54, TSEN34, TSEN15, and TSEN2) cause various forms of pontocerebellar hypoplasia, a disorder characterized by hypoplasia of the cerebellum and the pons, microcephaly, dysmorphisms, and other variable clinical features. Here, we report an intronic recessive founder variant in the gene TSEN2 that results in abnormal splicing of the mRNA of this gene, in six individuals from four consanguineous families affected with microcephaly, multiple craniofacial malformations, radiological abnormalities of the central nervous system, and cognitive retardation of variable severity. Remarkably, unlike patients with previously described mutations in the components of the TSEN complex, all the individuals that we report developed atypical hemolytic uremic syndrome (aHUS) with thrombotic microangiopathy, microangiopathic hemolytic anemia, thrombocytopenia, proteinuria, severe hypertension, and end-stage kidney disease (ESKD) early in life. Bulk RNA sequencing of peripheral blood cells of four affected individuals revealed abnormal tRNA transcripts, indicating an alteration of the tRNA biogenesis. Morpholino-mediated skipping of exon 10 of tsen2 in zebrafish produced phenotypes similar to human patients. Thus, we have identified a novel syndrome accompanied by aHUS suggesting the existence of a link between tRNA biology and vascular endothelium homeostasis, which we propose to name with the acronym TRACK syndrome (TSEN2 Related Atypical hemolytic uremic syndrome, Craniofacial malformations, Kidney failure).


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Microcefalia , Animais , Síndrome Hemolítico-Urêmica Atípica/genética , Endonucleases/genética , Feminino , Humanos , Masculino , Microcefalia/complicações , Mutação/genética , RNA de Transferência , Peixe-Zebra/genética
19.
Am J Med Genet A ; 188(10): 2976-2987, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097644

RESUMO

Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.


Assuntos
Doenças Hematológicas , Deficiência Intelectual , Doenças Vestibulares , Anormalidades Múltiplas , Face/anormalidades , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
20.
Am J Med Genet A ; 188(5): 1639-1646, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092157

RESUMO

Osteogenesis imperfecta (OI) is a heterogeneous group of disorders with bone fragility. In 2019, homozygous pathogenic variants in MESD were described for the first time in five patients with severe form of OI. To date, 12 patients have been reported. The aim of this study is to report long-term follow-up findings of a girl with MESD variant. She had triangular face, sparse hair, wide fontanelle, blue sclera, softening of the occipital bone, congenital torticollis, and long fingers. Wormian bones, multiple rib and long bone fractures, and platyspondyly were detected in her skeletal radiographs. During the 21-years follow-up, intellectual disability, oligodontia, recurrent fractures, bowing of humerus, hip and knee contractures leading to crossing of the legs, swelling of the interphalangeal joints, and kyphoscoliosis were observed. Although the bisphosphonate treatment was started at 2.5 years of age, recurrent fractures continued to occur until 13 years of age. She lost her walking ability at 4.5 years of age. The final adult height was 128 cm (-6.0 SD). Homozygous c.631_632delAA (p.Lys211Glufs*19) variant in MESD was detected at 19 years of age. In conclusion, this study provides long-term clinical and radiological findings in a patient with a very rare type of OI.


Assuntos
Osteogênese Imperfeita , Adolescente , Adulto , Difosfonatos , Feminino , Seguimentos , Homozigoto , Humanos , Mutação , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA