RESUMO
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Assuntos
Neoplasias Renais , Sarcoma de Células Claras , Tumor de Wilms , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Células HEK293 , Proteínas Repressoras/genética , Neoplasias Renais/patologia , Rim/metabolismoRESUMO
Gaucher Disease (GD), the most common lysosomal disorder, arises from mutations in the GBA1 gene and is characterized by a wide spectrum of phenotypes, ranging from mild hematological and visceral involvement to severe neurological disease. Neuronopathic patients display dramatic neuronal loss and increased neuroinflammation, whose molecular basis are still unclear. Using a combination of Drosophila dGBA1b loss-of-function models and GD patient-derived iPSCs differentiated towards neuronal precursors and mature neurons we showed that different GD- tissues and neuronal cells display an impairment of growth mechanisms with an increased cell death and reduced proliferation. These phenotypes are coupled with the downregulation of several Hippo transcriptional targets, mainly involved in cells and tissue growth, and YAP exclusion from nuclei. Interestingly, Hippo knock-down in the GBA-KO flies rescues the proliferative defect, suggesting that targeting the Hippo pathway can be a promising therapeutic approach to neuronopathic GD.
Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Doença de Gaucher/terapia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Via de Sinalização Hippo , Neurônios/metabolismo , Proliferação de CélulasRESUMO
Gaucher disease is a lysosomal storage disorder characterized by ß-glucosidase enzyme deficiency and substrate accumulation, especially in cells of the reticuloendothelial system. Typical features of the disease are the unrestrained activation of inflammatory mechanisms, whose molecular pathways are still unclear. To investigate biological mechanisms underlying the macrophage activation in GD, we derived iPSCs from a healthy donor and a GD patient line and differentiated them into hematopoietic progenitors. While GD iPSCs are able to efficiently give rise to CD33+/CD45+ myeloid progenitors, the maturation towards the CD14+/CD163+ monocyte/macrophages fate resulted enhanced in the GD lines, that in addition displayed a decreased growth potential compared to control cells either in semisolid or in liquid culture. The GD lines growth impairment was associated with a significant upregulation of RIPK3 and MLKL, two key effectors of necroptosis, the inflammation related cell death pathway. The activation of necroptosis, which has already been linked to neuronopathic GD, may play a role in the disease proinflammatory condition and in the identified cell growth defects. Understanding the GD macrophage role in the alteration of mechanisms linked to cellular metabolism imbalance, cell death and inflammation are crucial in identifying new ways to approach the disease.
Assuntos
Doença de Gaucher/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Inflamação/patologia , Macrófagos/patologia , Morte Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Humanos , Ativação de Macrófagos , Monócitos/patologia , Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
In an attempt to explore the role of the gut microbiome during recent canine evolutionary history, we sequenced the metagenome of 13 canine coprolites dated ca. 3,600-3,450 years ago from the Bronze Age archaeological site of Solarolo (Italy), which housed a complex farming community. The microbiome structure of Solarolo dogs revealed continuity with that of modern dogs, but it also shared some features with the wild wolf microbiome, as a kind of transitional state between them. The dietary niche, as also inferred from the microbiome composition, was omnivorous, with evidence of consumption of starchy agricultural foods. Of interest, the Solarolo dog microbiome was particularly enriched in sequences encoding alpha-amylases and complemented a low copy number of the host amylase gene. These findings suggest that Neolithic dogs could have responded to the transition to a starch-rich diet by expanding microbial functionalities devoted to starch catabolism, thus compensating for delayed host response.