Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 6(1)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024011

RESUMO

Fungal infections remain a global health threat with high morbidity and mortality. The human immune system must, therefore, perpetually defend against invasive fungal infections. Phagocytosis is critical for the clearance of fungal pathogens, as this cellular process allows select immune cells to internalize and destroy invading fungal cells. While much is known about the protein players that enable phagocytosis, the various roles that lipids play during this fundamental innate immune process are still being illuminated. In this review, we describe recent discoveries that shed new light on the mechanisms by which host lipids enable the phagocytic uptake and clearance of fungal pathogens.

2.
J Biol Chem ; 282(24): 17537-47, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17449912

RESUMO

Sphingomyelin (SM) is a vital component of cellular membranes in organisms ranging from mammals to protozoa. Its production involves the transfer of phosphocholine from phosphatidylcholine to ceramide, yielding diacylglycerol in the process. The mammalian genome encodes two known SM synthase (SMS) isoforms, SMS1 and SMS2. However, the relative contributions of these enzymes to SM production in mammalian cells remained to be established. Here we show that SMS1 and SMS2 are co-expressed in a variety of cell types and function as the key Golgi- and plasma membrane-associated SM synthases in human cervical carcinoma HeLa cells, respectively. RNA interference-mediated depletion of either SMS1 or SMS2 caused a substantial decrease in SM production levels, an accumulation of ceramides, and a block in cell growth. Although SMS-depleted cells displayed a reduced SM content, external addition of SM did not restore growth. These results indicate that the biological role of SM synthases goes beyond formation of SM.


Assuntos
Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Células HeLa , Homeostase , Humanos , Isoenzimas/genética , Lipídeos/química , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Frações Subcelulares/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA