Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(6): 1359-1385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154805

RESUMO

Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.


Assuntos
Doenças do Sistema Nervoso Central , Demência , Humanos , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Transporte Biológico , Demência/tratamento farmacológico
2.
Exp Eye Res ; 233: 109561, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429521

RESUMO

Adrenaline is a sympathomimetic drug used to maintain pupil dilation and to decrease the risk of bleeding. The aim of this study was to demonstrate if adrenaline could exert antifibrotic effects in glaucoma surgery. Adrenaline was tested in fibroblast-populated collagen contraction assays and there was a dose-response decrease in fibroblast contractility: matrices decreased to 47.4% (P = 0.0002) and 86.6% (P = 0.0036) with adrenaline 0.0005% and 0.01%, respectively. There was no significant decrease in cell viability even at high concentrations. Human Tenon's fibroblasts were also treated with adrenaline (0%, 0.0005%, 0.01%) for 24 h and RNA-Sequencing was performed on the Illumina NextSeq 2000. We carried out detailed gene ontology, pathway, disease and drug enrichment analyses. Adrenaline 0.01% upregulated 26 G1/S and 11 S-phase genes, and downregulated 23 G2 and 17 M-phase genes (P < 0.05). Adrenaline demonstrated similar pathway enrichment to mitosis and spindle checkpoint regulation. Adrenaline 0.05% was also injected subconjunctivally during trabeculectomy, PreserFlo Microshunt and Baerveldt 350 tube surgeries, and patients did not experience any adverse effects. Adrenaline is a safe and cheap antifibrotic drug that significantly blocks key cell cycle genes when used at high concentrations. Unless contraindicated, we recommend subconjunctival injections of adrenaline (0.05%) in all glaucoma bleb-forming surgeries.


Assuntos
Glaucoma , Trabeculectomia , Humanos , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/cirurgia , Epinefrina/farmacologia , Epinefrina/metabolismo , Vasoconstritores/farmacologia , Vasoconstritores/metabolismo , Genes cdc , Fibroblastos/metabolismo
3.
Adv Funct Mater ; 31(37): 2104843, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35712226

RESUMO

The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.

4.
Exp Eye Res ; 205: 108482, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548256

RESUMO

The use of RNA interference technology has proven to inhibit the expression of many target genes involved in the underlying pathogenesis of several diseases affecting various systems. First established in in vitro and later in animal studies, small interfering RNA (siRNA) and antisense oligonucleotide (ASO) therapeutics are now entering clinical trials with the potential of clinical translation to patients. Gene-silencing therapies have demonstrated promising responses in ocular disorders, predominantly due to the structure of the eye being a closed and compartmentalised organ. However, although the efficacy of such treatments has been observed in both preclinical studies and clinical trials, there are issues pertaining to the use of these drugs which require more extensive research with regards to the delivery and stability of siRNAs and ASOs. This would improve their use for long-term treatment regimens and alleviate the difficulties experienced by patients with ocular diseases. This review provides a detailed insight into the recent developments and clinical trials that have been conducted for several gene-silencing therapies, including ISTH0036, SYL040012, SYL1001, PF-04523655, Sirna-027, QR-110, QR-1123, QR-421a and IONIS-FB-LRX in glaucoma, dry eye disease, age-related macular degeneration, diabetic macular oedema and various inherited retinal diseases. Our aim is to explore the potential of these drugs whilst evaluating their associated advantages and disadvantages, and to discuss the future translation of RNA therapeutics in ophthalmology.


Assuntos
Terapia Genética/métodos , Glaucoma/terapia , Degeneração Macular/terapia , Edema Macular/terapia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Doenças Retinianas/terapia , Ensaios Clínicos como Assunto , Inativação Gênica , Humanos , Pesquisa Translacional Biomédica
5.
Org Biomol Chem ; 17(4): 945-957, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30629080

RESUMO

The formation of a novel trichain (TC) lipid was discovered when a cationic lipid possessing a terminal hydroxyl group and the helper lipid dioleoyl l-α-phosphatidylethanolamine (DOPE) were formulated as vesicles and stored. Importantly, the transfection efficacies of lipopolyplexes comprised of the TC lipid, a targeting peptide and DNA (LPDs) were found to be higher than when the corresponding dichain (DC) lipid was used. To explore this interesting discovery and determine if this concept can be more generally applied to improve gene delivery efficiencies, the design and synthesis of a series of novel TC cationic lipids and the corresponding DC lipids was undertaken. Transfection efficacies of the LPDs were found to be higher when using the TC lipids compared to the DC analogues, so experiments were carried out to investigate the reasons for this enhancement. Sizing experiments and transmission electron microscopy indicated that there were no major differences in the size and shape of the LPDs prepared using the TC and DC lipids, while circular dichroism spectroscopy showed that the presence of the third acyl chain did not influence the conformation of the DNA within the LPD. In contrast, small angle neutron scattering studies showed a considerable re-arrangement of lipid conformation upon formulation as LPDs, particularly of the TC lipids, while gel electrophoresis studies revealed that the use of a TC lipid in the LPD formulation resulted in enhanced DNA protection properties. Thus, the major enhancement in transfection performance of these novel TC lipids can be attributed to their ability to protect and subsequently release DNA. Importantly, the TC lipids described here highlight a valuable structural template for the generation of gene delivery vectors, based on the use of lipids with three hydrophobic chains.


Assuntos
Descoberta de Drogas , Técnicas de Transferência de Genes , Lipídeos/química , Dicroísmo Circular , Lipídeos/síntese química , Lipossomos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
Mol Ther ; 26(12): 2812-2822, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301666

RESUMO

RNAi induced by double-stranded small interfering RNA (siRNA) molecules has attracted great attention as a naturally occurring approach to silence gene expression with high specificity. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a master regulator of cytoskeletal gene expression and, thus, represents a promising target to prevent fibrosis. A major hurdle to implementing siRNA therapies is the method of delivery, and we have, thus, optimized lipid-peptide-siRNA (LPR) nanoparticles containing MRTF-B siRNAs as a targeted approach to prevent conjunctival fibrosis. We tested 15 LPR nanoparticle formulations with different lipid compositions, surface charges, and targeting or non-targeting peptides in human conjunctival fibroblasts. In vitro, the LPR formulation of the DOTMA/DOPE lipid with the targeting peptide Y (LYR) was the most efficient in MRTF-B gene silencing and non-cytotoxic compared to the non-targeting formulation. In vivo, subconjunctival administration of LYR nanoparticles containing MRTF-B siRNAs doubled bleb survival in a pre-clinical rabbit model of glaucoma filtration surgery. Furthermore, MRTF-B LYR nanoparticles reduced the MRTF-B mRNA by 29.6% in rabbit conjunctival tissues, which led to significantly decreased conjunctival scarring with no adverse side effects. LYR-mediated delivery of siRNA shows promising results to increase bleb survival and to prevent conjunctival fibrosis after glaucoma filtration surgery.


Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Glaucoma/complicações , Glaucoma/genética , Nanoestruturas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Fenômenos Biofísicos , Biópsia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Cirurgia Filtrante/efeitos adversos , Cirurgia Filtrante/métodos , Inativação Gênica , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Lipossomos , Nanopartículas , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Peptídeos/química , Coelhos
7.
Nanomedicine ; 15(1): 208-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352311

RESUMO

We developed an anticancer siRNA delivery system (named HLPR) through modular assembly of endogenous molecules. The structure of HLPR was a tightly condensed siRNA-peptide inner core in turn surrounded by the disordered lipid layer and thin HA coating from which the EGFR-targeted amino acid sequences of YHWYGYTPQNVI partially protrude outside of cell surfaces. Both HA and YHWYGYTPQNVI anchored on HLPR were responsible for targeting CD44 and EGFR overexpressed on the tumor cell surfaces, respectively. HLPR was relatively stable in the blood circulation and reached the tumor tissue in vivo through passive and active targeting. Then HLPR entered tumor cells mainly through EGFR-mediated pathway followed by the separation of HA from the remaining parts of nanocomplexes. The HA-uncoated complexes escaped the endosome through the membrane fusion function of DOPE and released cargoes (siRNA and peptide/siRNA) in the cytoplasm. HLPR significantly inhibited the growth of implanted subcutaneous liver tumors without toxicity.


Assuntos
Carcinoma Hepatocelular/terapia , Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/antagonistas & inibidores , Neoplasias Hepáticas/terapia , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Receptores de Hialuronatos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Nanopartículas/química , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Thorax ; 73(9): 847-856, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748250

RESUMO

INTRODUCTION: Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS: We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS: Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and ßENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION: Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Canais Epiteliais de Sódio/genética , Inativação Gênica , RNA Interferente Pequeno , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas
9.
J Nanobiotechnology ; 16(1): 97, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482196

RESUMO

BACKGROUND: Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. RESULTS: The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. CONCLUSIONS: Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.


Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Fator de Resposta Sérica/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Doenças da Túnica Conjuntiva/tratamento farmacológico , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Lipossomos/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Coelhos , Distribuição Tecidual , Transativadores/antagonistas & inibidores , Transativadores/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-38578377

RESUMO

Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.

11.
Biomacromolecules ; 14(3): 761-70, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23339543

RESUMO

Efficient delivery of small interfering RNA (siRNA) remains the greatest technological barrier to the clinical implementation of RNA interference strategies. We are investigating the relationship between the biophysical properties of siRNA nanocomplexes and their transfection efficiency as an approach to the generation of improved formulations. Peptide-based formulations are of great interest, and so in this study we have compared nanocomplex formulations for siRNA delivery containing linear and branched oligolysine or oligoarginine peptides. Peptides were combined with cationic liposomes in siRNA formulations and compared for transfection efficiency, siRNA packaging efficiency, biophysical properties, and particle stability. Nanocomplexes containing linear peptides were more condensed and stable than branched peptide formulations; however, their silencing activity was lower, suggesting that their greater stability might limit siRNA release within the cell. Thus, differences in transfection appeared to be associated with differences in packaging and stability, indicating the importance of optimizing this feature in siRNA nanocomplexes.


Assuntos
Nanoestruturas/química , Peptídeos/química , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Cátions , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Liberação de Medicamentos , Lipossomos , Luciferases/análise , Luciferases/metabolismo , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Transfecção
12.
J Pharm Pharmacol ; 75(2): 276-286, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617180

RESUMO

OBJECTIVES: To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. METHODS: 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. KEY FINDINGS: The PCL-CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 µg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL-CS-5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. CONCLUSIONS: The PCL-CS-5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL-CS-5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.


Assuntos
Quitosana , Glaucoma , Humanos , Preparações de Ação Retardada/química , Fluoruracila/farmacologia , Quitosana/química , Impressão Tridimensional
13.
Adv Healthc Mater ; 12(18): e2203022, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36906918

RESUMO

Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated. The medium-term stability of the nanoparticles was evaluated by monitoring their physicochemical characteristics, entrapment and transfection efficiency, every two weeks over one month. It is demonstrated, that the use of cryoprotectants protects nanoparticles against loss of function and degradation in all storage conditions. Moreover, it is shown that the addition of sucrose enables all nanoparticles to remain stable and maintain their efficacy for up to a month when stored at -80 °C, regardless of cargo or type of nanoparticle. DNA-loaded nanoparticles also remain stable in a wider variety of storage conditions than mRNA-loaded ones. Importantly, these novel LNPs show increased GFP expression that can signify their future use in gene therapies, beyond the established role of LNPs in RNA therapeutics.


Assuntos
Lipossomos , Nanopartículas , RNA Mensageiro/genética , Transfecção , DNA , Lipídeos , RNA Interferente Pequeno/genética
14.
Acta Ophthalmol ; 100(3): 243-252, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34114746

RESUMO

During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice.


Assuntos
Exossomos , MicroRNAs , Nanopartículas , Oftalmologia , Sistemas de Liberação de Medicamentos , Exossomos/química , Exossomos/metabolismo , Humanos , MicroRNAs/metabolismo
15.
Int J Pharm ; 625: 122094, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952803

RESUMO

3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems. In addition, 3D printed medical devices and implants can be customised for each patient to provide a more tailored treatment approach. The advantages and applications of 3D printing can be used to treat patients with different eye conditions, with advances in 3D bioprinting offering novel therapy applications in ophthalmology. The purpose of this review paper is to provide an in-depth understanding of the applications and advantages of 3D printing in treating different ocular conditions in the cornea, glaucoma, retina, lids and orbits.


Assuntos
Bioimpressão , Oftalmologia , Humanos , Medicina de Precisão , Impressão Tridimensional , Próteses e Implantes
16.
J Control Release ; 348: 786-797, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718210

RESUMO

Despite recent advances in the field of mRNA therapy, the lack of safe and efficacious delivery vehicles with pharmaceutically developable properties remains a major limitation. Here, we describe the systematic optimisation of lipid-peptide nanocomplexes for the delivery of mRNA in two murine cancer cell types, B16-F10 melanoma and CT26 colon carcinoma as well as NCI-H358 human lung bronchoalveolar cells. Different combinations of lipids and peptides were screened from an original lipid-peptide nanocomplex formulation for improved luciferase mRNA transfection in vitro by a multi-factorial screening approach. This led to the identification of key structural elements within the nanocomplex associated with substantial improvements in mRNA transfection efficiency included alkyl tail length of the cationic lipid, the fusogenic phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol. The peptide component (K16GACYGLPHKFCG) was further improved by the inclusion of a linker, RVRR, that is cleavable by the endosomal enzymes cathepsin B and furin, and a hydrophobic motif (X-S-X) between the mRNA packaging (K16) and receptor targeting domains (CYGLPHKFCG). Nanocomplex transfections of a murine B16-F10 melanoma tumour supported the inclusion of cholesterol for optimal transfection in vivo as well as in vitro. In vitro transfections were also performed with mRNA encoding interleukin-15 as a potential immunotherapy agent and again, the optimised formulation with the key structural elements demonstrated significantly higher expression than the original formulation. Physicochemical characterisation of the nanocomplexes over time indicated that the optimal formulation retained biophysical properties such as size, charge and mRNA complexation efficiency for 14 days upon storage at 4 °C without the need for additional stabilising agents. In summary, we have developed an efficacious lipid-peptide nanocomplex with promising pharmaceutical development properties for the delivery of therapeutic mRNA.


Assuntos
Lipossomos , Melanoma , Animais , Humanos , Lipídeos/química , Lipossomos/química , Camundongos , Peptídeos/química , RNA Mensageiro/genética , Transfecção
17.
Pharmaceutics ; 14(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432663

RESUMO

The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide cΥ, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of MRTF-B silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced MRTF-B gene and were non-cytotoxic in TM and FF cells. The presence of cΥ made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with cΥ achieved a greater decrease in contractility compared to LNPs without cΥ. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.

18.
FASEB J ; 24(7): 2301-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20203088

RESUMO

Synthetic nanoparticle formulations have the potential for tumor-targeted gene delivery. Receptor-targeted nanocomplex (RTN) formulations comprise mixtures of cationic liposomes and targeting peptides that self-assemble on mixing with nucleic acids. RTN formulations were prepared containing different polyethylene glycol (PEG)ylated lipids with esterase-cleavable linkers (e.g., ME42) to promote intracellular PEG detachment and nanoparticle disassembly. In addition, integrin-targeting peptides (peptide ME27) were tested with endosomal furin- and cathepsin B-cleavable peptide linkers located between the integrin-binding ligand and the K(16) nucleic acid-binding domain to promote intracellular disengagement from the receptor. ME42/ME27 RTNs formed stable particles of <200 nm in isotonic salt buffers, compared with 4-microm particles formed by un-PEGylated RTNs. Transfection efficiency by PEG-modified, cleavable RTNs improved approximately 2-fold in 4 different cell lines, with 80% efficiency in murine neuroblastoma cells. In an in vivo model of neuroblastoma, ME42/ME27 RTNs delivering luciferase genes were tumor specific, with little expression in other organs tested. PEGylation of the RTNs enhanced luciferase transfection 5-fold over non-PEG formulations, whereas the cleavability of the peptide ME27 enhanced transfection 4-fold over that of RTNs with noncleavable peptides. Cleavability of the lipid for in vivo transfections had no effect. PEGylated, cleavable RTN formulations offer prospects for tumor-specific therapeutic gene transfer.


Assuntos
Antineoplásicos/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Endossomos/metabolismo , Hidrólise , Lipídeos , Camundongos , Nanopartículas/uso terapêutico , Neuroblastoma/patologia , Peptídeos , Polietilenoglicóis , Pró-Fármacos , Suínos
19.
Pharmaceutics ; 13(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805660

RESUMO

The master regulator of the fibrosis cascade is the myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics. In the past, inhibitors and small interfering RNAs (siRNAs) targeting the MRTF-B gene have been deployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest challenge in implementing siRNA therapeutics is the method of delivery. In this study, we utilised the novel, pH-sensitive, cationic lipid CL4H6, which has previously demonstrated potent targeting of hepatocytes and endosomal escape, to safely and efficiently deliver an MRTF-B siRNA into human conjunctival fibroblasts. We prepared two lipid nanoparticle (LNP) formulations, incorporating targeting cleavable peptide cY in one of them, and measured their physicochemical properties and silencing effect in human conjunctival fibroblasts. Both proved to be non-cytotoxic at a concentration of 50 nM and effectively silenced the MRTF-B gene in vitro, with the targeting cleavable peptide not affecting the silencing efficiency [LNP with cY: 62.1% and 81.5% versus LNP without cY: 77.7% and 80.2%, at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09), respectively]. On the other hand, the addition of the targeting cleavable peptide significantly increased the encapsulation efficiency of the LNPs from 92.5% to 99.3% (p = 0.0005). In a 3D fibroblast-populated collagen matrix model, both LNP formulations significantly decreased fibroblast contraction after a single transfection. We conclude that the novel PEGylated CL4H6-MRTF-B siRNA-loaded LNPs represent a promising therapeutic approach to prevent conjunctival fibrosis after glaucoma filtration surgery.

20.
Sci Rep ; 10(1): 1046, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974512

RESUMO

P53 mutations are responsible for drug-resistance of tumour cells which impacts on the efficacy of treatment. Alternative tumour suppressor pathways need to be explored to treat p53- deficient tumours. The E3 ubiquitin ligase, ITCH, negatively regulates the tumour suppressor protein TP73, providing a therapeutic target to enhance the sensitivity of the tumour cells to the treatment. In the present study, two p53-mutant neuroblastoma cell lines were used as in vitro models. Using immunostaining, western blot and qPCR methods, we firstly identified that ITCH was expressed on p53-mutant neuroblastoma cell lines. Transfection of these cell lines with ITCH siRNA could effectively silence the ITCH expression, and result in the stabilization of TP73 protein, which mediated the apoptosis of the neuroblastoma cells upon irradiation treatment. Finally, in vivo delivery of the ITCH siRNA using nanoparticles to the neuroblastoma xenograft mouse model showed around 15-20% ITCH silencing 48 hours after transfection. Our data suggest that ITCH could be silenced both in vitro and in vivo using nanoparticles, and silencing of ITCH sensitizes the tumour cells to irradiation treatment. This strategy could be further explored to combine the chemotherapy/radiotherapy treatment to enhance the therapeutic effects on p53-deficient neuroblastoma.


Assuntos
Neuroblastoma/terapia , Proteínas Repressoras/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/genética , Neuroblastoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA