Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Pathol ; 52(2-3): 123-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38888280

RESUMO

Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans. This skill set is important for CIVM development, validation, and data interpretation. Ideally, diverse teams of scientists, including engineers, biologists, pathologists, and others, should collaboratively develop and characterize novel CIVM, and collectively assess their precise use cases (context of use). Implementing a morphological CIVM evaluation should be essential in this process. This requires robust histological technique workflows, image analysis techniques, and needs correlation with translational biomarkers. In this review, we demonstrate how such tissue technologies and analytics support the development and use of CIVM for drug efficacy and safety evaluations. We encourage the scientific community to explore similar options for their projects and to engage with health authorities on the use of CIVM in benefit-risk assessment.


Assuntos
Patologistas , Patologia , Toxicologia , Humanos , Toxicologia/métodos , Animais , Bioengenharia , Testes de Toxicidade , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro
2.
Cells Tissues Organs ; 211(3): 269-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34380142

RESUMO

Microphysiological systems (MPS) or tissue chips/organs-on-chips are novel in vitro models that emulate human physiology at the most basic functional level. In this review, we discuss various hurdles to widespread adoption of MPS technology focusing on issues from multiple stakeholder sectors, e.g., academic MPS developers, commercial suppliers of platforms, the pharmaceutical and biotechnology industries, and regulatory organizations. Broad adoption of MPS technology has thus far been limited by a gap in translation between platform developers, end-users, regulatory agencies, and the pharmaceutical industry. In this brief review, we offer a perspective on the existing barriers and how end-users may help surmount these obstacles to achieve broader adoption of MPS technology.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Desenvolvimento de Medicamentos , Humanos
3.
Adv Exp Med Biol ; 1230: 27-42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285363

RESUMO

Organs-on-chips, also known as "tissue chips" or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems. This chapter will outline future avenues of research in the MPS field, how cutting-edge biotechnology advances are expanding the applications for these systems, and discuss the current and future potential and challenges remaining for the field to address.


Assuntos
Dispositivos Lab-On-A-Chip , Análise Serial de Tecidos , Animais , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos
4.
Hepatology ; 65(2): 710-721, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775817

RESUMO

Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Testes de Toxicidade , Células Cultivadas/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes/metabolismo , Valor Preditivo dos Testes , Sensibilidade e Especificidade
5.
Adv Exp Med Biol ; 1031: 405-415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214585

RESUMO

The scientific and technological development of microphysiological systems (MPS) modeling organs-on-chips, or "tissue chips" (TCs), has progressed rapidly over the past decade. Stem cell research and microfluidic concepts have combined to lead to the development of microphysiological platforms representing an ever-expanding list of different human organ systems. In the context of rare diseases, these bioengineered microfluidics platforms hold promise for modeling of disorders and could prove useful in the screening and efficacy testing of existing therapeutics. Additionally, they have the potential for replacing and refining animal use for new drugs and clinical treatments, or could even act as surrogate human systems for testing of new therapeutics in the future, which could be particularly useful in populations of rare disease sufferers. This chapter will discuss the current state of tissue chip research, and challenges facing the field. Additionally, we will discuss how these devices are being used to model basic cellular and molecular phenotypes of rare diseases, holding promise to provide new tools for understanding of disease pathologies and screening and efficacy testing of potential therapeutics for drug discovery.


Assuntos
Descoberta de Drogas/instrumentação , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Produção de Droga sem Interesse Comercial , Doenças Raras/tratamento farmacológico , Células Cultivadas , Difusão de Inovações , Descoberta de Drogas/métodos , Desenho de Equipamento , Humanos , Modelos Biológicos , Doenças Raras/diagnóstico , Doenças Raras/metabolismo
6.
Mol Genet Metab ; 112(2): 87-122, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24667081

RESUMO

New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 µmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 µmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.


Assuntos
Biopterinas/análogos & derivados , Dietoterapia , Fenilcetonúrias/sangue , Fenilcetonúrias/terapia , Guias de Prática Clínica como Assunto , Biopterinas/uso terapêutico , Gerenciamento Clínico , Medicina Baseada em Evidências , Feminino , Humanos , Recém-Nascido , National Institutes of Health (U.S.) , Fenilcetonúrias/diagnóstico , Gravidez , Estados Unidos
7.
ALTEX ; 41(4): 545-566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39440996

RESUMO

This article explores the potential of principles established in translational medicine for the use of bio-markers to advance the validation of alternatives to animal testing in preclinical safety assessment. It examines especially how such principles can enhance the predictive power, mechanistic under-standing, and human relevance of new approach methodologies (NAMs). Key concepts from translational medicine, such as fit-for-purpose validation, evidence-based approaches, and inte-grated testing strategies, are already being applied to the development and validation of NAMs. The article discusses challenges in implementing biomarker-based approaches, including standardi-zation, demonstration of relevance, regulatory acceptance, and addressing biological complexity. It also highlights opportunities for advancement through collaborative efforts, technological inno-vations, and regulatory evolution. Case studies demonstrate successful applications of biomarkers in preclinical safety, while future perspectives explore emerging trends like multi-omics integration, microphysiological systems, and artificial intelligence. The article emphasizes the potential of bio-markers and translational science approaches in creating more predictive, efficient, and ethical preclinical safety assessment paradigms in the use of NAMs. Use of biomarkers can enable the mechanistic validation of human-relevant models and provide a means to relate changes in NAMs to animal or clinical study results. By leveraging these tools, the field can work towards reducing reliance on animal testing while improving the accuracy and human relevance of safety predictions.


This article examines how biomarkers and translational science principles can improve safety testing without using animals. Biomarkers are quantifiable indicators of biological processes. Some of these can predict disease progression or drug effects. Translational science aims to apply laboratory findings towards clinical benefits. The article explores how combining these approaches can create better, more human-relevant and validated alternatives to animal testing. It discusses challenges that the field faces, including standardization of methods and getting regulatory acceptance. It also highlights opportunities, like integration with emerging technologies and increased global collabo­ration. The ultimate goal is to improve human health by streamlining NAM validation processes, i.e., show that new safety tests are more accurate, efficient, and ethical than current animal-based methods.


Assuntos
Alternativas aos Testes com Animais , Biomarcadores , Pesquisa Translacional Biomédica , Alternativas aos Testes com Animais/métodos , Biomarcadores/metabolismo , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Ciência Translacional Biomédica
8.
Hum Mol Genet ; 20(7): 1438-55, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21257639

RESUMO

The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt oligomers in the nucleus of HD neurons and in mitochondria may disrupt neuronal functions. Based on these findings, we propose that mutant Htt in association with mitochondria imbalance and mitochondrial dynamics impairs axonal transport of mitochondria, decreases mitochondrial function and damages neurons in affected brain regions of HD patients.


Assuntos
Axônios/metabolismo , Lobo Frontal/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Axônios/patologia , Transporte Biológico/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Dano ao DNA/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Feminino , Lobo Frontal/patologia , Regulação da Expressão Gênica/genética , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
9.
Mol Cell Proteomics ; 10(12): O111.015446, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22052993

RESUMO

Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the United States National Cancer Institute convened the "International Workshop on Proteomic Data Quality Metrics" in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, funding agencies, and data repositories. Attendees discussed and agreed up on two primary needs for the wide use of quality metrics: 1) an evolving list of comprehensive quality metrics and 2) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in the Journal of Proteome Research, Molecular and Cellular Proteomics, Proteomics, and Proteomics Clinical Applications as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals.


Assuntos
Acesso à Informação , Espectrometria de Massas , Proteômica , Benchmarking/métodos , Benchmarking/normas , Guias como Assunto , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Proteômica/educação , Proteômica/métodos , Proteômica/normas , Projetos de Pesquisa
10.
Proteomics ; 12(1): 11-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22069307

RESUMO

Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the U.S. National Cancer Institute (NCI) convened the "International Workshop on Proteomic Data Quality Metrics" in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, funding agencies, and data repositories. Attendees discussed and agreed upon two primary needs for the wide use of quality metrics: (i) an evolving list of comprehensive quality metrics and (ii) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in Proteomics, Proteomics Clinical Applications, Journal of Proteome Research, and Molecular and Cellular Proteomics, as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals.


Assuntos
Acesso à Informação , Espectrometria de Massas , Proteômica , Benchmarking/métodos , Benchmarking/normas , Guias como Assunto , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Proteômica/educação , Proteômica/métodos , Proteômica/normas , Projetos de Pesquisa
11.
J Proteome Res ; 11(2): 1412-9, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22053864

RESUMO

Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the U.S. National Cancer Institute (NCI) convened the "International Workshop on Proteomic Data Quality Metrics" in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, funding agencies, and data repositories. Attendees discussed and agreed up on two primary needs for the wide use of quality metrics: (1) an evolving list of comprehensive quality metrics and (2) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in the Journal of Proteome Research, Molecular and Cellular Proteomics, Proteomics, and Proteomics Clinical Applications as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals.


Assuntos
Acesso à Informação , Espectrometria de Massas , Proteômica , Benchmarking/métodos , Benchmarking/normas , Guias como Assunto , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Proteômica/educação , Proteômica/métodos , Proteômica/normas , Projetos de Pesquisa
12.
Ann Emerg Med ; 60(4): 451-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22424650

RESUMO

Randomized clinical trials, which aim to determine the efficacy and safety of drugs and medical devices, are a complex enterprise with myriad challenges, stakeholders, and traditions. Although the primary goal is scientific discovery, clinical trials must also fulfill regulatory, clinical, and ethical requirements. Innovations in clinical trials methodology have the potential to improve the quality of knowledge gained from trials, the protection of human subjects, and the efficiency of clinical research. Adaptive clinical trial methods represent a broad category of innovations intended to address a variety of long-standing challenges faced by investigators, such as sensitivity to previous assumptions and delayed identification of ineffective treatments. The implementation of adaptive clinical trial methods, however, requires greater planning and simulation compared with a more traditional design, along with more advanced administrative infrastructure for trial execution. The value of adaptive clinical trial methods in exploratory phase (phase 2) clinical research is generally well accepted, but the potential value and challenges of applying adaptive clinical trial methods in large confirmatory phase clinical trials are relatively unexplored, particularly in the academic setting. In the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) project, a multidisciplinary team is studying how adaptive clinical trial methods could be implemented in planning actual confirmatory phase trials in an established, National Institutes of Health-funded clinical trials network. The overarching objectives of ADAPT-IT are to identify and quantitatively characterize the adaptive clinical trial methods of greatest potential value in confirmatory phase clinical trials and to elicit and understand the enthusiasms and concerns of key stakeholders that influence their willingness to try these innovative strategies.


Assuntos
Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Ensaios Clínicos Fase II como Assunto/métodos , Interpretação Estatística de Dados , Término Precoce de Ensaios Clínicos/métodos , Humanos , Comunicação Interdisciplinar , Projetos de Pesquisa , Tamanho da Amostra
13.
Viruses ; 14(5)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632824

RESUMO

The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADx) initiative to meet the needs for COVID-19 diagnostic and surveillance testing, and to speed its innovation in the development, commercialization, and implementation of new technologies and approaches. The RADx Radical (RADx-Rad) initiative is one component of the NIH RADx program which focuses on the development of new or non-traditional applications of existing approaches, to enhance their usability, accessibility, and/or accuracy for the detection of SARS-CoV-2. Exosomes are a subpopulation of extracellular vesicles (EVs) 30-140 nm in size, that are critical in cell-to-cell communication. The SARS-CoV-2 virus has similar physical and molecular properties as exosomes. Therefore, the novel tools and technologies that are currently in development for the isolation and detection of exosomes, may prove to be invaluable in screening for SARS-CoV-2 viral infection. Here, we describe how novel exosome-based technologies are being pivoted for the detection of SARS-CoV-2 and/or the diagnosis of COVID-19. Considerations for these technologies as they move toward clinical validation and commercially viable diagnostics is discussed along with their future potential. Ultimately, the technologies in development under the NIH RADx-Rad exosome-based non-traditional technologies toward multi-parametric and integrated approaches for SARS-CoV-2 program represent a significant advancement in diagnostic technology, and, due to a broad focus on the biophysical and biochemical properties of nanoparticles, the technologies have the potential to be further pivoted as tools for future infectious agents.


Assuntos
COVID-19 , Exossomos , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Tecnologia , Estados Unidos
14.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177947

RESUMO

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Assuntos
Engenharia , Organoides , Humanos , Engenharia Tecidual
15.
Exp Biol Med (Maywood) ; 247(1): 1-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783606

RESUMO

There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.


Assuntos
Pesquisa Biomédica , Simulação por Computador , Humanos
16.
Cell Mol Life Sci ; 67(3): 353-68, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19826765

RESUMO

Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.


Assuntos
Encéfalo/enzimologia , Transaminases/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Ácido Cinurênico/metabolismo , Camundongos , Estrutura Terciária de Proteína , Transaminases/genética , Transaminases/fisiologia
17.
Exp Biol Med (Maywood) ; 246(12): 1435-1446, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899539

RESUMO

Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.


Assuntos
Desenvolvimento de Medicamentos/métodos , Procedimentos Analíticos em Microchip/métodos , Animais , Humanos
18.
Nat Rev Drug Discov ; 20(5): 345-361, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32913334

RESUMO

Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.


Assuntos
Simulação por Computador , Descoberta de Drogas/tendências , Procedimentos Analíticos em Microchip , Alternativas aos Testes com Animais , Animais , Engenharia Biomédica , Técnicas de Cultura de Células , Células Cultivadas , Humanos
19.
BMC Biochem ; 11: 19, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20482848

RESUMO

BACKGROUND: Kynurenine aminotransferase (KAT) catalyzes the transamination of kynunrenine to kynurenic acid (KYNA). KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains. RESULTS: This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65 degrees C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5 degrees C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively. CONCLUSION: The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases.


Assuntos
Transaminases/antagonistas & inibidores , Aminoácidos/metabolismo , Animais , Ácido Aspártico/farmacologia , Encéfalo/enzimologia , Meia-Vida , Concentração de Íons de Hidrogênio , Masculino , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Desnaturação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Transaminases/metabolismo , Triptofano/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-33490601

RESUMO

The discovery that all cells secrete extracellular vesicles (EVs) to shuttle proteins and nucleic acids to recipient cells suggested they play an important role in intercellular communication. EVs are widely distributed in many body fluids, including blood, cerebrospinal fluid, urine and saliva. Exosomes are nano-sized EVs of endosomal origin that regulate many pathophysiological processes including immune responses, inflammation, tumour growth, and infection. Healthy individuals release exosomes with a cargo of different RNA, DNA, and protein contents into the circulation, which can be measured non-invasively as biomarkers of healthy and diseased states. Cancer-derived exosomes carry a unique set of DNA, RNA, protein and lipid reflecting the stage of tumour progression, and may serve as diagnostic and prognostic biomarkers for various cancers. However, many gaps in knowledge and technical challenges in EVs and extracellular RNA (exRNA) biology, such as mechanisms of EV biogenesis and uptake, exRNA cargo selection, and exRNA detection remain. The NIH Common Fund-supported exRNA Communication Consortium was launched in 2013 to address major scientific challenges in this field. This review focuses on scientific highlights in biomarker discovery of exosome-based exRNA in cancer and its possible clinical application as cancer biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA