Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(47): 32305-32316, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991400

RESUMO

We share our perspective that a simple analytical model for electron tunneling in molecular junctions can greatly aid quantitative analysis of experimental data in molecular electronics. In particular, the single-level model (SLM), derived from first principles, provides a precise prediction for the current-voltage (I-V) characteristics in terms of key electronic structure parameters, which in turn depend on the molecular and contact architecture. SLM analysis thus facilitates understanding of structure-property relationships and provides metrics that can be compared across different types of tunnel junctions, as we illustrate with several examples.

2.
Langmuir ; 36(42): 12572-12579, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32936644

RESUMO

In this article, the synthesis, characterization, and cyclic voltammetry (CV) measurements are reported for ferrocene-terminated oligophenyleneimine (OPI_Fc) and ferrocene-terminated conjugation-broken oligophenyleneimine (CB-OPI_Fc) self-assembled monolayers (SAMs) in two different electrolytes, namely, 1-ethyl-3-methylimidazolium-bis (trifluoromethyl-sulfonyl) imide (EMITFSI) ionic liquid and tetrabutylammonium hexafluorophosphate (Bu4NPF6) in acetonitrile (0.1 M solution). The SAMs were synthesized on Au surfaces by the sequential imine condensation reactions. CV was used to investigate the kinetics of electron transfer (ET) to the ferrocene, and it was observed that the standard ET rate constant (k0) is a strong function of the electrolyte nature as well as the chemical composition of the SAM. Interestingly, when 0.1 M Bu4NPF6 in acetonitrile was used as the electrolyte, all of the SAMs exhibited quite similar k0 values. However, in the case of the ionic liquid, we found that k0 dramatically varies for each SAM and trends as OPI 6_Fc > CB3-OPI 6_Fc > CB5-OPI 6_Fc > CB3,5-OPI 6_Fc. We also examined the temperature dependence of ET kinetics for OPI 2_Fc, OPI 4_Fc, OPI 8_Fc, CB3-OPI 6_Fc, CB5-OPI 6_Fc, and CB3,5-OPI 6_Fc SAMs in EMITFSI ionic liquid. It was found that the activation energies of the ET in these SAMs are very similar (∼0.2 eV). Moreover, it was observed that ln k0 varies linearly with the molecular length for three SAMs, OPI 2_Fc, OPI 4_Fc, and OPI 8_Fc. These findings suggest that the ET to the ferrocene in OPI_Fc and CB-OPI _Fc SAMs takes place via a direct tunneling mechanism.

3.
ACS Omega ; 9(4): 4581-4593, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313520

RESUMO

The issue of water resource pollution resulting from the discharge of dyes is a matter of great concern for the environment. In this investigation, a new ternary heterogeneous Mg-Al LDH@g-C3N4X@Ag3PO4Y (X = wt % of g-C3N4 with respect to Mg-Al layered double hydroxide (LDH) and Y = wt % of Ag3PO4 loaded on Mg-Al LDH@g-C3N430) nanocomposite was prepared with the aim of increasing charge carrier separation and enhancement of photocatalytic performance to degrade methylene blue (MB) dye. The prepared samples were subjected to characterization via Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, and photoelectrochemical analysis. It was observed that in the presence of the composite of Mg-Al LDH and g-C3N4, the photocatalytic decomposition of MB under 150 W mercury lamp illumination increases significantly as opposed to Mg-Al LDH alone, and the Mg-Al LDH@g-C3N4 level with Ag3PO4 coating causes the complete degradation of MB to occur in less time. The outcomes show that the Mg-Al LDH@g-C3N430@Ag3PO45 nanocomposite demonstrated the highest photodegradation activity (99%). Scavenger tests showed that the two most effective agents in the photodegradation of MB are holes and hydroxyl radicals, respectively. Finally, a type II heterojunction photocatalytic degradation mechanism for MB by Mg-Al LDH@g-C3N430@Ag3PO45 was proposed.

4.
Sci Rep ; 12(1): 22225, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564456

RESUMO

In this work, the role of Lewis acid-base (LAB) interaction on the stereoselectivity of the Diels-Alder (DA) reaction has been studied by DFT in gas and solution (dichloromethane) phases. The calculations were performed at the B3LYP/6-311G++ (d, p) level. Two different series of DA reactions were investigated: (1)-three mono-substituted cyclopentadienes + dimethyl(vinyl)borane; (2)-five α,ß-unsaturated carbonyl compounds + cyclopenta-2,4-dien-1-yldimethylborane. The reacting diene and dienophile pairs were chosen to restrict LAB interaction to the exo reaction pathway. It was found that in some of the examined cases, the favorable LAB interaction is so strong that it can lead to a completely exo-selective DA reaction. Furthermore, a novel multistep synthetic method was hypothesized for preparing exo cycloadduct with near 100% stereoselectivity. Our results can open up new avenues toward the rational design of exo-selective DA reactions for synthesizing novel bioorganic compounds.

5.
ACS Nano ; 10(4): 4372-83, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27017971

RESUMO

We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and computational results, we propose that the transport mechanism is thermally assisted polaron tunneling in the case of CB-OPI wires, which is consistent with their increased resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA