Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Kidney Dis ; 84(2): 215-223.e1, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38479460

RESUMO

RATIONALE & OBJECTIVE: The potential effects of antenatal glucocorticoid exposure on the health of children are unclear. We examined the association of gestational exposure to maternal systemic glucocorticoids and the risk of developing chronic kidney disease (CKD) in childhood. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: Newborns cared for at the largest health care delivery system in Taiwan between 2004 and 2018. EXPOSURE: Maternal prescriptions for systemic glucocorticoids between the last menstrual period and birth as a proxy for gestational exposure. OUTCOME: Incidence of childhood CKD, including congenital anomalies of the kidney and urinary tract (CAKUT) and other kidney diseases (non-CAKUT), over 10 years. ANALYTICAL APPROACH: Cox proportional hazards models with stabilized inverse probability of treatment weighting and robust sandwich estimator were used to estimate the average association between systemic glucocorticoids and incident CKD after adjustment for offspring characteristics (adjusted HR: AHR). RESULTS: Among 23,363 singleton-born children, gestational systemic glucocorticoid exposure was significantly associated with a higher risk of childhood CKD (AHR, 1.69 [95% CI, 1.01-2.84]). Stratified analyses showed stronger associations between systemic glucocorticoids and childhood CKD within the strata of birth<37 weeks' gestational age (AHR, 2.38 [95% CI, 1.19-4.78]), male sex (AHR, 1.89 [95% CI, 1.00-3.55]), gestational exposure in the second trimester (AHR, 6.70 [95% CI, 2.17-20.64]), and total dose of>24mg hydrocortisone equivalent (AHR, 1.91 [95% CI, 1.05-3.47]). LIMITATIONS: Study was limited to the Taiwan health care delivery system and childhood CKD events through the age of 10 years. CONCLUSIONS: The findings of this study suggest that gestational exposure to systemic glucocorticoids is associated with the occurrence of kidney disease in childhood. If these findings are confirmed, they may inform clinicians who are considering prescribing systemic glucocorticoids during pregnancy. PLAIN-LANGUAGE SUMMARY: In a singleton-born cohort of neonates, maternal exposure to antenatal systemic glucocorticoids was significantly associated with a 1.7-fold increased risk of the children developing chronic kidney disease over the first 10 years of life. Children of mothers who received>24mg of hydrocortisone equivalent, systemic glucocorticoid treatment in second trimester of gestation, and children born at<37 weeks of gestational age had a higher risk of childhood kidney disease after gestational systemic glucocorticoid exposure. If these findings are confirmed, they may inform clinicians who are considering prescribing systemic glucocorticoids during pregnancy.


Assuntos
Glucocorticoides , Efeitos Tardios da Exposição Pré-Natal , Insuficiência Renal Crônica , Humanos , Feminino , Gravidez , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Insuficiência Renal Crônica/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos Retrospectivos , Masculino , Taiwan/epidemiologia , Recém-Nascido , Criança , Adulto , Incidência , Pré-Escolar , Exposição Materna/efeitos adversos , Fatores de Risco , Lactente , Estudos de Coortes
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731818

RESUMO

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Assuntos
Doenças Cardiovasculares , Efeitos Tardios da Exposição Pré-Natal , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Humanos , Gravidez , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/induzido quimicamente , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/etiologia , Exposição Materna/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Desenvolvimento Fetal/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Reprogramação Metabólica
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542273

RESUMO

The identification of pathological links among metabolic disorders, kidney ailments, and cardiovascular conditions has given rise to the concept of cardiovascular-kidney-metabolic (CKM) syndrome. Emerging prenatal risk factors seem to increase the likelihood of CKM syndrome across an individual's lifespan. The renin-angiotensin system (RAS) plays a crucial role in maternal-fetal health and maintaining homeostasis in cardiovascular, metabolic, and kidney functions. This review consolidates current preclinical evidence detailing how dysregulation of the RAS during pregnancy and lactation leads to CKM characteristics in offspring, elucidating the underlying mechanisms. The multi-organ effects of RAS, influencing fetal programming and triggering CKM traits in offspring, suggest it as a promising reprogramming strategy. Additionally, we present an overview of interventions targeting the RAS to prevent CKM traits. This comprehensive review of the potential role of the RAS in the early-life programming of CKM syndrome aims to expedite the clinical translation process, ultimately enhancing outcomes in cardiovascular-kidney-metabolic health.


Assuntos
Sistema Cardiovascular , Hipertensão , Síndrome Metabólica , Gravidez , Feminino , Humanos , Sistema Renina-Angiotensina , Síndrome Metabólica/metabolismo , Rim/metabolismo , Sistema Cardiovascular/metabolismo , Coração , Hipertensão/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338891

RESUMO

The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.


Assuntos
Doenças do Sistema Nervoso Autônomo , Hipertensão , Pré-Eclâmpsia , Efeitos Tardios da Exposição Pré-Natal , Insuficiência Renal Crônica , Gravidez , Humanos , Feminino , Ratos , Animais , Masculino , Citrulina/farmacologia , Citrulina/uso terapêutico , Ratos Sprague-Dawley , Hipertensão/etiologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/complicações , Adenina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
5.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000532

RESUMO

We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Adulto , Recém-Nascido , Sangue Fetal/metabolismo , Pressão Sanguínea , Estudos Prospectivos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Cardiovascular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257342

RESUMO

Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 µM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.


Assuntos
Butiratos , Ésteres , Metilaminas , Humanos , Butiratos/farmacologia , Estudos de Viabilidade , Resveratrol/farmacologia
7.
Health Qual Life Outcomes ; 21(1): 117, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891615

RESUMO

OBJECTIVE: To characterize longitudinal changes and correlations between the measures of EQ-5D-Y and generic PedsQL and their associations with clinical changes in children and adolescents with mild-to-moderate chronic kidney disease (CKD). METHODS: Participants were recruited from January 2017 to September 2021 in a medical center in Taiwan. Both instruments were administered in their initial visits and every 6-month subsequent visits. Spearman's Rho (ρ) was used to assess correlations between the scores of EQ-5D-Y and PedsQL measures in longitudinal changes. Cohen's effect size (ES) was used to evaluate the changes of scores/subscales over time. In addition, factors associated with longitudinal changes in the score/subscales were explored. RESULTS: A total of 121 participants were enrolled, and 83 with ≥ 3 HRQOL measures during the 3.5 years follow-up were assessed their changes of HRQOL measures. The correlations (ρ > 0.3) appeared between the changes in the visual analog scale (VAS) of EQ-5D-Y and emotional and social subscales of PedsQL. ES was small (< 0.5) in the VAS and level-sum-score (LSS) of EQ-5D-Y scores for the clinical changes in comorbidities, while some PedsQL subscales were medium to high (0.5-0.8 or > 0.8). Hypertension, mineral bone disorder/anemia, and hyperuricemia associated with the changes in both HRQOL scores were varied by their various domains. CONCLUSION: Both EQ-5D-Y and PedsQL of HRQOL measures were responsive to worsened childhood CKD-related comorbidities during the follow-up; however, convergent validity between them was limited in some domains. The LSS of EQ-5D-Y showed greater changes than the VAS by comorbidity status; further comparison with utility weight is needed to determine the better performance of EQ-5D-Y.


Assuntos
Qualidade de Vida , Insuficiência Renal Crônica , Adolescente , Humanos , Criança , Qualidade de Vida/psicologia , Inquéritos e Questionários , Reprodutibilidade dos Testes , Comorbidade , Psicometria
8.
Pediatr Nephrol ; 38(2): 519-528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35678879

RESUMO

BACKGROUND: Correlation between reports of children and parent for health-related quality of life (HRQOL) is not well studied. This study aims to assess the degree of agreement between child self- and parent proxy-rated HRQOL and to identify factors associated with discordance at baseline and during follow-up in Taiwanese children with chronic kidney disease (CKD). METHODS: This study includes pediatric patients aged 5-18 years with confirmed CKD. Participants completed the generic version of the Pediatric Quality of Life Inventory (PedsQL) at baseline and every 6 months during follow-up. Child-parent agreement on HRQOL reports was assessed using intraclass correlation coefficient (ICC). Multivariate regression models were used to determine factors associated with child-parent discordance. RESULTS: Of the 112 child-parent dyads included in the analysis, 97 dyads with 640 patient visits were assessed in 4.5 years. Children reported higher total scores on the physical and psychosocial domains as compared to their parent proxies. ICC was low (< 0.5) for the psychosocial domain and moderate for the physical health domain at initial assessment and slightly increased for the physical health (0.62) and for school functioning (0.51) during follow-up. Development of mineral bone disorder/anemia (ß, 11.75 [3.77-19.72]) and proteinuria (ß, 8.48 [1.15-15.81]) in the follow-up were associated with increased discordance in school functioning, and fathers with chronic disease were associated with increased discordance in social functioning (ß, 4.21 [0.68-7.74]). CONCLUSIONS: Parent proxy consistently estimated lower PedsQL score compared to self-reports of children. Child self-rated psychosocial health domains should be evaluated whenever possible to better elucidate treatment outcome over time. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Qualidade de Vida , Insuficiência Renal Crônica , Humanos , Criança , Qualidade de Vida/psicologia , Autorrelato , Pais/psicologia , Procurador , Inquéritos e Questionários
9.
J Formos Med Assoc ; 122(3): 258-266, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36207218

RESUMO

BACKGROUND/PURPOSE: Metabolic syndrome (MetS) and overactive bladder might share common pathophysiologies. Environmental fructose exposure during pre- and postnatal periods of rats may program MetS-associated bladder overactivity. We explored the dysregulated insulin signalling at bladder mucosa, as a common mechanism, in facilitating bladder overactivity in rats with MetS induced by maternal and post-weaning fructose diet. METHODS: Male offspring of Sprague-Dawley rats were subject into 4 groups by maternal and post-weaning diets (i.e., Control/Control, Fructose/Control, Control/Fructose and Fructose/Fructose by diets). Micturition behavior was evaluated. Acidic ATP solution was used to elicit cystometric reflex along with insulin counteraction. Concentration-response curves to insulin were plotted. The canonical signalling pathway of insulin was evaluated in the bladder mucosal using Western blotting. Levels of detrusor cGMP and urinary NO2 plus NO3 were measured. RESULTS: Male offspring with any fructose exposure presents traits of MetS and bladder overactivity. We observed all fructose exposure groups have the poor urodynamic response to insulin during ATP solution stimulation and poor insulin-activated detrusor relaxation in organ bath study. Compared to controls, the Control/Fructose and Fructose/Fructose groups showed the increased phosphorylation levels of IRS1 (Ser307) and IRS2 (Ser731); thus, suppressed the downstream effectors and urinary NOx/detrusor cGMP levels. The Fructose/Control group showed the compensatory increase of phospho-AKT (Ser473) and phospho-eNOS/eNOS levels, but decreased in eNOS, phospho-eNOS, urinary NOx, and detrusor cGMP levels. CONCLUSION: Our results show dysregulated insulin signalling at bladder mucosa should be a common mechanism of MetS-associated bladder overactivity programmed by pre-and postnatal fructose diet.


Assuntos
Síndrome Metabólica , Bexiga Urinária Hiperativa , Ratos , Masculino , Animais , Bexiga Urinária , Insulina/efeitos adversos , Frutose/efeitos adversos , Frutose/metabolismo , Desmame , Ratos Sprague-Dawley , Mucosa/metabolismo , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/metabolismo
10.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175813

RESUMO

Melatonin, an endogenous hormone mainly released at night by the pineal gland, has multifaceted biofunctions. Emerging evidence points to melatonin having a crucial role in kidney health and disease. As the prevalence of chronic kidney disease (CKD) is still rising, a superior strategy to advance global kidney health is needed to not just treat CKD, but prevent it early on. Adult kidney disease can have its origins in early life. This review aims to evaluate the recent literature regarding melatonin's effect on kidney development, its clinical uses in the early stage of life, animal models documenting preventive applications of melatonin on offspring's kidney-related disease, and a thorough summary of therapeutic considerations concerning melatonin supplementation.


Assuntos
Melatonina , Glândula Pineal , Insuficiência Renal Crônica , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Rim , Insuficiência Renal Crônica/tratamento farmacológico , Modelos Animais , Ritmo Circadiano
11.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674799

RESUMO

Chronic kidney disease (CKD) affects 10% of the global population, including pregnant women. Adverse maternal conditions determine the developmental programming of many diseases later in life. We previously demonstrated that adult rat offspring born to dams with CKD developed hypertension and renal hypertrophy. Trimethylamine-N-oxide (TMAO), a uremic toxin derived from the gut microbiota, has been linked to hypertension. This study assesses the effects of TMAO inhibition by iodomethylcholine (IMC) treatment on offspring hypertension programmed by maternal CKD. Female rats were fed either a control or a 0.5% adenine diet before conception, with or without IMC treatment during pregnancy and lactation. Maternal IMC treatment averted maternal CKD-primed offspring hypertension and renal hypertrophy in 12-week-old offspring. Offspring hypertension is associated with increases in the plasma TMAO concentration and oxidative stress and shifts in gut microbiota. The beneficial effects of IMC are related to a reduction in TMAO; increases in genera Acetatifactor, Bifidobacterium, and Eubacterium; and decreases in genera Phocacecola and Bacteroides. Our findings afford insights into the targeting of the gut microbiota to deplete TMAO production, with therapeutic potential for the prevention of offspring hypertension programmed by maternal CKD, although these results still need further clinical translation.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Feminino , Ratos , Humanos , Animais , Gravidez , Insuficiência Renal Crônica/tratamento farmacológico , Metilaminas , Hipertensão/prevenção & controle , Hipertrofia , Óxidos/uso terapêutico
12.
Biochem Biophys Res Commun ; 621: 8-13, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35809346

RESUMO

Vascular calcification is commonly observed in chronic kidney disease (CKD) and is associated with increased morbidity and mortality. This study examined whether exogenous BMP7 administration can modulate disturbed CKD-MBD in adenine-induced chronic uremic rats. After an adenine diet for 4 weeks, the animals were injected with BMP7 for 2 weeks. Biochemical data, kidney tissue, bony structure, and vascular calcification of the thoracic aorta were examined and compared. Reduced renal function, hyperphosphatemia, and hyperparathyroidism with low 1,25(OH)2 vitamin D levels were observed in the adenine group. MicroCT revealed reduced bone mineral density (BMD), decreased bone and tissue volume ratio (BV/TV), and decreased trabecular number with increased separation. Marked vascular calcification was observed in adenine-fed animals, and immunohistochemical analysis showed increased expression of BMP2, RUNX2, vitamin D receptor (VDR), and Pit1 in aortic tissue. Treatment with BMP7 was associated with reduced serum phosphate, intact parathyroid hormone, FGF23, sclerostin, and DKK1 levels. BMP7 administration was accompanied with improvements in BMD and BV/TV. The increase in BMP2, RUNX2, VDR, and Pit1 was reversed by BMP7. In conclusion, exogenous BMP7 administration improved hyperphosphatemia and hyperparathyroidism in adenine-induced CKD. This treatment also attenuated vascular calcification and modulated structural abnormalities in the skeletal system.


Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Calcificação Vascular , Adenina , Animais , Proteína Morfogenética Óssea 7/uso terapêutico , Subunidade alfa 1 de Fator de Ligação ao Core , Hiperfosfatemia/complicações , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo
13.
Environ Toxicol ; 37(11): 2728-2742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214339

RESUMO

Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.


Assuntos
Frutose , Neuroblastoma , Animais , Linhagem Celular , Frutose/farmacologia , Camundongos , Mitocôndrias , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Tribulus
14.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897755

RESUMO

The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.


Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley
15.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743061

RESUMO

Polyphenols are the largest group of phytochemicals with health benefits. Early life appears to offer a critical window of opportunity for launching interventions focused on preventing hypertension, as increasing evidence supports the supposition that hypertension can originate in early life. Although polyphenols have antihypertensive actions, knowledge of the potential beneficial action of the early use of polyphenols to avert the development of hypertension is limited. Thus, in this review, we first provide a brief summary of the chemistry and biological function of polyphenols. Then, we present the current epidemiological and experimental evidence supporting the early-life origins of hypertension. We also document animal data on the use of specific polyphenols as an early-life intervention to protect offspring against hypertension in adulthood and discuss underlying mechanisms. Continued research into the use of polyphenols to prevent hypertension from starting early in life will have far-reaching implications for future health.


Assuntos
Hipertensão , Polifenóis , Animais , Modelos Animais , Origem da Vida , Estresse Oxidativo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
16.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409313

RESUMO

The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.


Assuntos
Microbioma Gastrointestinal , Probióticos , Insuficiência Renal Crônica , Animais , Criança , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Prebióticos , Probióticos/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico
17.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077575

RESUMO

Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate in early life. This concept is now being termed the developmental origins of health and disease (DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through early intervention (i.e., reprogramming). In this review, we summarize the existing literature that supports how environmental cues induced MetS of developmental origins and the interplay between gut microbiota and other fundamental underlying mechanisms. We also present an overview of experimental animal models addressing implementation of gut microbiota-targeted reprogramming interventions to avert the programming of MetS. Even with growing evidence from animal studies supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of developmental origins, their effects on pregnant women are still unknown and these results require further clinical translation.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Probióticos , Anormalidades Múltiplas , Animais , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Eritrodermia Ictiosiforme Congênita , Deformidades Congênitas dos Membros , Síndrome Metabólica/tratamento farmacológico , Prebióticos , Gravidez , Probióticos/uso terapêutico
18.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955421

RESUMO

Hypertension is an important public health challenge, affecting up to 30-50% of adults worldwide. Several epidemiological studies indicate that high blood pressure originates in fetal life-the so-called programming effect or developmental origin of hypertension. Iron-deficiency anemia has become one of the most prevalent nutritional problems globally. Previous animal experiments have shown that prenatal iron-deficiency anemia adversely affects offspring hypertension. However, the underlying mechanism remains unclear. We used a maternal low-iron diet Sprague Dawley rat model to study changes in blood pressure, the renal renin-angiotensin system, oxidative stress, inflammation, and sodium transporters in adult male offspring. Our study revealed that 16-week-old male offspring born to mothers with low dietary iron throughout pregnancy and the lactation period had (1) higher blood pressure, (2) increased renal cortex angiotensin II receptor type 1 and angiotensin-converting enzyme abundance, (3) decreased renal cortex angiotensin II receptor type 2 and MAS abundance, and (4) increased renal 8-hydroxy-2'-deoxyguanosine and interleukin-6 abundance. Improving the iron status of pregnant mothers could influence the development of hypertension in their offspring.


Assuntos
Anemia Ferropriva , Hipertensão , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Anemia Ferropriva/metabolismo , Animais , Pressão Sanguínea , Feminino , Hipertensão/metabolismo , Ferro/metabolismo , Ferro da Dieta/metabolismo , Rim/metabolismo , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina
19.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430717

RESUMO

Maternal high-fat (HF) diet exposure in utero may affect fetal development and cause metabolic problems throughout life due to lipid dysmetabolism and oxidative damage. Metformin has been suggested as a potential treatment for body weight reduction and nonalcoholic fatty liver disease, but its reprogramming effect on offspring is undetermined. This study assesses the effects of maternal metformin treatment on hepatic steatosis in offspring caused by maternal HF diet. Female rats were fed either a control or an HF diet before conception, with or without metformin treatment during gestation, and placenta and fetal liver tissues were collected. In another experiment, the offspring were fed a control diet until 120 d (adult stage). Metformin treatment during pregnancy ameliorates placental oxidative stress and enhances placental glucose transporter 1 (GLUT1), GLUT3, and GLUT4 expression levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Maternal metformin treatment was shown to reprogram maternal HF diet-induced changes in offspring fatty liver with the effects observed in adulthood as well. Further validation is required to develop maternal metformin therapy for clinical applications.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Feminino , Ratos , Gravidez , Animais , Dieta Hiperlipídica/efeitos adversos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Placenta/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Gorduras na Dieta/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
20.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887270

RESUMO

Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring's gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.


Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Acetatos/farmacologia , Animais , Pressão Sanguínea , Suplementos Nutricionais , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Lactação , Masculino , Exposição Materna/efeitos adversos , Minociclina/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA