Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808058

RESUMO

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Enzimológica da Expressão Gênica , Heme/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microinjeções , Morfolinos/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
2.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23135403

RESUMO

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Heme/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Animais , Modelos Animais de Doenças , Eritroblastos/citologia , Ferroquelatase/metabolismo , Teste de Complementação Genética , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Oxirredução , Proteínas/genética , Peixe-Zebra/metabolismo , Proteína Inibidora de ATPase
3.
J Cell Physiol ; 227(3): 1090-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21567396

RESUMO

The interaction between HIV-1 Nef and the Src kinase Hck in macrophages has been shown to accelerate the progression to AIDS. We previously showed that Nef disturbed the N-glycosylation/trafficking of Fms, a cytokine receptor essential for maintaining macrophages in an anti-inflammatory state, in an Hck-dependent manner. Here, we show the underlying molecular mechanism of this effect. Using various Hck isoforms and their mutants and Golgi-targeting Hck mutants, we confirmed that Hck activation at the Golgi causes the Nef-induced Fms N-glycosylation defect. Importantly, we found that both the co-expression of Nef and Hck and the expression of a Golgi-targeted active Hck mutant caused alterations in the distribution of GM130, a Golgi protein that was shown to be required for efficient protein glycosylation. Moreover, the activation of Hck at the Golgi caused strong serine phosphorylation of the GM130-interacting Golgi structural protein GRASP65, which is known to induce Golgi cisternal unstacking. Using pharmacological inhibitors, we also found that the activation of Hck at the Golgi followed by the activation of the MAP kinase ERK-GRASP65 cascade is involved in the Fms N-glycosylation defect. These results suggest that Nef perturbs the structure and signaling of the Golgi by activating Hck at the Golgi, and thereby, induces the N-glycosylation/trafficking defect of Fms, which is in line with the idea that Src family kinases are crucial Golgi regulators.


Assuntos
Complexo de Golgi/patologia , Complexo de Golgi/virologia , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Proteínas Proto-Oncogênicas c-hck/fisiologia , Transdução de Sinais/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Progressão da Doença , Complexo de Golgi/enzimologia , Células HEK293 , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Transporte Proteico/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(38): 16263-8, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805291

RESUMO

Mitoferrin-1 (Mfrn1; Slc25a37), a member of the solute carrier family localized in the mitochondrial inner membrane, functions as an essential iron importer for the synthesis of mitochondrial heme and iron-sulfur clusters in erythroblasts. The biochemistry of Mfrn1-mediated iron transport into the mitochondria, however, is poorly understood. Here, we used the strategy of in vivo epitope-tagging affinity purification and mass spectrometry to investigate Mfrn1-mediated mitochondrial iron homeostasis. Abcb10, a mitochondrial inner membrane ATP-binding cassette transporter highly induced during erythroid maturation in hematopoietic tissues, was found as one key protein that physically interacts with Mfrn1 during mouse erythroleukemia (MEL) cell differentiation. Mfrn1 was shown previously to have a longer protein half-life in differentiated MEL cells compared with undifferentiated cells. In this study, Abcb10 was found to enhance the stabilization of Mfrn1 protein in MEL cells and transfected heterologous COS7 cells. In undifferentiated MEL cells, cotransfected Abcb10 specifically interacts with Mfrn1 to enhance its protein stability and promote Mfrn1-dependent mitochondrial iron importation. The structural stabilization of the Mfrn1-Abcb10 complex demonstrates a previously uncharacterized function for Abcb10 in mitochondria. Furthermore, the binding domain of Mfrn1-Abcb10 interaction maps to the N terminus of Mfrn1. These results suggest the tight regulation of mitochondrial iron acquisition and heme synthesis in erythroblasts is mediated by both transcriptional and posttranslational mechanisms, whereby the high level of Mfrn1 is stabilized by oligomeric protein complexes.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Western Blotting , Células COS , Diferenciação Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunoprecipitação , Ferro/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Microscopia Confocal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ligação Proteica , Estabilidade Proteica , Transfecção
5.
Nat Chem Biol ; 5(12): 874-875, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26190951

RESUMO

Two iron regulatory proteins (IRP1 and IRP2) regulate translation and/or stability of mRNAs encoding proteins required for iron storage, acquisition and utilization. Rather than IRP2 directly sensing iron concentrations, iron has been shown to regulate the level of the SKP1-CUL1-FBXL5 E3 ubiquitin ligase protein complex, which is responsible for IRP2 degradation.

6.
J Cell Physiol ; 221(2): 458-68, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19585521

RESUMO

HIV-1 Nef accelerates the progression to AIDS by binding with and activating a Src kinase Hck, but underlying molecular basis is not understood. We revealed that Nef disturbed N-glycosylation/trafficking of a cytokine receptor Fms in an Hck-dependent manner, a possible trigger to worsen uncontrolled immune system. Here, we provide direct evidence that dys-regulated activation of Hck pre-localized to the Golgi apparatus causes this Fms maturation arrest. A striking change in Hck induced by Nef other than activation was its skewed localization to the Golgi due to predominant Golgi-localization of Nef. Studies with different Nef alleles and their mutants showed a clear correlation among higher Nef-Hck affinity, stronger Hck activation, severe Golgi-localization of Hck and severe Fms maturation arrest. Studies with a newly discovered Nef-Hck binding blocker 2c more clearly showed that skewed Golgi-localization of active Hck was indeed the cause of Fms maturation arrest. 2c blocked Nef-induced skewed Golgi-localization of an active form of Hck (Hck-P2A) and Fms maturation arrest by Nef/Hck-P2A, but showed no inhibition on Hck-P2A kinase activity. Our finding establishes an intriguing link between the pathogenesis of Nef and a newly emerging concept that the Golgi-localized Src kinases regulate the Golgi function.


Assuntos
Complexo de Golgi/enzimologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Alelos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-hck/antagonistas & inibidores , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
7.
Int J Cancer ; 125(6): 1464-72, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19521981

RESUMO

Primary effusion lymphoma (PEL) is a unique and recently identified non-Hodgkin's lymphoma that was originally identified in patients with AIDS. PEL is caused by the Kaposi sarcoma-associated herpes virus (KSHV/HHV-8) and shows a peculiar presentation involving liquid growth in the serous body cavity and a poor prognosis. As the nuclear factor (NF)-kappaB pathway is activated in PEL and plays a central role in oncogenesis, we examined the effect of a biscoclaurine alkaloid, cepharanthine (CEP) on PEL derived cell lines (BCBL-1, TY-1 and RM-P1), in vitro and in vivo. An methylthiotetrazole assay revealed that the cell proliferation of PEL cell lines was significantly suppressed by the addition of CEP (1-10 microg/ml). CEP also inhibited NF-kappaB activation and induced apoptotic cell death in PEL cell lines. We established a PEL animal model by intraperitoneal injection of BCBL-1, which led to the development of ascites and diffuse infiltration of organs, without obvious solid lymphoma formation, which resembles the diffuse nature of human PEL. Intraperitoneal administration of CEP inhibited ascites formation and diffuse infiltration of BCBL-1 without significant systemic toxicity in this model. These results indicate that NF-kappaB could be an ideal molecular target for treating PEL and that CEP is quite useful as a unique therapeutic agent for PEL.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/patologia , NF-kappa B/antagonistas & inibidores , Animais , Western Blotting , Inibidores de Caspase , Caspases/metabolismo , Ciclo Celular , Ensaio de Desvio de Mobilidade Eletroforética , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/patologia , Herpesvirus Humano 8/genética , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/genética , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Clin Invest ; 124(10): 4294-304, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25157825

RESUMO

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.


Assuntos
Eritropoese/genética , Heme/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Anemia/metabolismo , Animais , Linhagem Celular , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Fígado/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Porfirinas/metabolismo , Protoporfirinas/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA