Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes Cells ; 29(6): 471-485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629626

RESUMO

In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.


Assuntos
Heterocromatina , Interferência de RNA , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Dedos de Zinco , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Genes Cells ; 29(7): 567-583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837646

RESUMO

Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.


Assuntos
Heterocromatina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulação Fúngica da Expressão Gênica , Epigênese Genética , Inativação Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética
3.
Genes Cells ; 27(2): 93-112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34910346

RESUMO

H2A.Z, an evolutionally well-conserved histone H2A variant, is involved in many biological processes. Although the function of H2A.Z in euchromatic gene regulation is well known, its function and deposition mechanism in heterochromatin are still unclear. Here, we report that H2A.Z plays multiple roles in fission yeast heterochromatin. While a small amount of H2A.Z localizes at pericentromeric heterochromatin, loss of methylation of histone H3 at Lys9 (H3K9me) induces the accumulation of H2A.Z, which is dependent on the H2A.Z loader, SWR complex. The accumulated H2A.Z suppresses heterochromatic non-coding RNA transcription. This transcriptional repression activity requires the N-terminal tail of H2A.Z, which is involved in the regulation of euchromatic gene transcription. RNAi-defective cells, in which a substantial amount of H3K9me is retained by RNAi-independent heterochromatin assembly, also accumulate H2A.Z at heterochromatin, and the additional loss of H2A.Z in these cells triggers a further decrease in H3K9me. Our results suggest that H2A.Z facilitates RNAi-independent heterochromatin assembly by antagonizing the demethylation activity of Epe1, an eraser of H3K9me. Furthermore, H2A.Z suppresses Epe1-mediated transcriptional activation, which is required for subtelomeric gene repression. Our results provide novel evidence that H2A.Z plays diverse roles in chromatin silencing.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Montagem e Desmontagem da Cromatina , Heterocromatina/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Genes Cells ; 26(4): 203-218, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33527595

RESUMO

In fission yeast, siRNA generated by RNA interference (RNAi) factors plays critical roles in establishment and maintenance of heterochromatin. To achieve efficient siRNA synthesis, RNAi factors assemble on heterochromatin via association with Swi6, a homologue of heterochromatin protein 1 (HP1), and heterochromatic noncoding RNA (hncRNA) retained on chromatin. In addition, spliceosomes formed on hncRNA introns recruit RNAi factors to hncRNA and heterochromatin. Small nuclear RNAs, components of the spliceosome, have a trimethylguanosine (TMG) cap that is generated by Tgs1-dependent hypermethylation of the normal m7G cap; this cap is required for efficient splicing of some mRNAs in budding yeast and Drosophila. In this study, we found that loss of Tgs1 in fission yeast destabilizes centromeric heterochromatin. Tgs1 was required for Swi6-independent siRNA synthesis, as well as for the establishment of centromeric heterochromatin. Loss of Tgs1 affected the splicing efficiency of hncRNA introns in the absence of Swi6. Furthermore, some hncRNAs have a TMG cap, and we found that loss of Tgs1 diminished the chromatin binding of these hncRNAs. Together, these results suggest that the Tgs1-dependent TMG cap plays critical roles in establishment of heterochromatin by ensuring spliceosome-dependent recruitment of RNAi factors and regulating the binding between chromatin and hncRNA.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , tRNA Metiltransferases/metabolismo , Centrômero/metabolismo , Inativação Gênica , Íntrons/genética , Modelos Biológicos , Domínios Proteicos , Splicing de RNA/genética , RNA Antissenso/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/química , tRNA Metiltransferases/química
5.
PLoS Genet ; 15(6): e1008129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206516

RESUMO

H3K9 methylation (H3K9me) is a conserved marker of heterochromatin, a transcriptionally silent chromatin structure. Knowledge of the mechanisms for regulating heterochromatin distribution is limited. The fission yeast JmjC domain-containing protein Epe1 localizes to heterochromatin mainly through its interaction with Swi6, a homologue of heterochromatin protein 1 (HP1), and directs JmjC-mediated H3K9me demethylation in vivo. Here, we found that loss of epe1 (epe1Δ) induced a red-white variegated phenotype in a red-pigment accumulation background that generated uniform red colonies. Analysis of isolated red and white colonies revealed that silencing of genes involved in pigment accumulation by stochastic ectopic heterochromatin formation led to white colony formation. In addition, genome-wide analysis of red- and white-isolated clones revealed that epe1Δ resulted in a heterogeneous heterochromatin distribution among clones. We found that Epe1 had an N-terminal domain distinct from its JmjC domain, which activated transcription in both fission and budding yeasts. The N-terminal transcriptional activation (NTA) domain was involved in suppression of ectopic heterochromatin-mediated red-white variegation. We introduced a single copy of Epe1 into epe1Δ clones harboring ectopic heterochromatin, and found that Epe1 could reduce H3K9me from ectopic heterochromatin but some of the heterochromatin persisted. This persistence was due to a latent H3K9me source embedded in ectopic heterochromatin. Epe1H297A, a canonical JmjC mutant, suppressed red-white variegation, but entirely failed to remove already-established ectopic heterochromatin, suggesting that Epe1 prevented stochastic de novo deposition of ectopic H3K9me in an NTA-dependent but JmjC-independent manner, while its JmjC domain mediated removal of H3K9me from established ectopic heterochromatin. Our results suggest that Epe1 not only limits the distribution of heterochromatin but also controls the balance between suppression and retention of heterochromatin-mediated epigenetic diversification.


Assuntos
Epigenômica , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Inativação Gênica , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Mutação
6.
Yeast ; 38(4): 251-261, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245560

RESUMO

Gene expression vectors are useful and important tools that are commonly used in a variety of experiments, including expression of foreign genes, functional analysis of genes of interest and complementation experiments. In this study, a hybrid promoter, combining the adh1+ upstream activating sequence (UAS) of fission yeast and the GAL10 core promoter of budding yeast, was constructed to enable high level expression depending on the presence of zinc in culture medium for fission yeast. When the hybrid promoter was cloned on the multicopy plasmid, it was fully induced and repressed within 10 h in the presence and absence of zinc, respectively. The kinetics of induction and reduction were similar to those of the endogenous adh1+ mRNA. In contrast, native adh1+ promoter lost its tight repression in zinc-depleted condition when it was cloned on the plasmid. Because adh1+ UAS-specific transcription factors have not yet been identified, we identified UAS elements involved in zinc sensing by characterizing this hybrid promoter. We also found that the expression level increased by the TATA box mutation, GATAA, in the presence of zinc.


Assuntos
Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Zinco/metabolismo , Genes Fúngicos , Engenharia Genética/métodos , Plasmídeos/genética , Schizosaccharomyces/efeitos dos fármacos , Zinco/farmacologia
7.
Nucleic Acids Res ; 44(9): 4147-62, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26792892

RESUMO

In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2-Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/ultraestrutura , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/ultraestrutura , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/fisiologia , Metilação , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Estabilidade de RNA , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiologia , Telômero/genética , Transcrição Gênica
8.
Genes Cells ; 21(8): 812-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27334362

RESUMO

Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Retículo Endoplasmático/genética , Lamina Tipo A/genética , Mutação , Membrana Nuclear/genética , Proteínas Nucleares/genética , Telômero/genética
9.
Mol Cell ; 34(4): 405-15, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19481521

RESUMO

Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Fatores de Elongação da Transcrição/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas Moleculares/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética
10.
Mol Cell ; 35(3): 365-76, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19683499

RESUMO

FACT has been proposed to function by displacing H2A-H2B dimers from nucleosomes to form hexasomes. Results described here with yeast FACT (yFACT) suggest instead that nucleosomes are reorganized to a form with the original composition but a looser, more dynamic structure. First, yFACT enhances hydroxyl radical accessibility and endonuclease digestion in vitro at sites throughout the nucleosome, not just in regions contacted by H2A-H2B. Accessibility increases dramatically, but the DNA remains partially protected. Second, increased nuclease sensitivity can occur without displacement of dimers from the nucleosome. Third, yFACT is required for eviction of nucleosomes from the GAL1-10 promoter during transcriptional activation in vivo, but the preferential reduction in dimer occupancy expected for hexasome formation is not observed. We propose that yFACT promotes a reversible transition between two nucleosomal forms, and that this activity contributes to the establishment and maintenance of the chromatin barrier as well as to overcoming it.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Histonas/metabolismo , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/fisiologia , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Dimerização , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Modelos Genéticos , Modelos Moleculares , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
11.
Protein Expr Purif ; 97: 44-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24583182

RESUMO

Chromatin-associated proteins are heterogeneously and dynamically composed. To gain a complete understanding of DNA packaging and basic nuclear functions, it is important to generate a comprehensive inventory of these proteins. However, biochemical purification of chromatin-associated proteins is difficult and is accompanied by concerns over complex stability, protein solubility and yield. Here, we describe a new method for optimized purification of the endogenously expressed fission yeast Set2 complex, histone H3K36 methyltransferase. Using the standard centrifugation procedure for purification, approximately half of the Set2 protein separated into the insoluble chromatin pellet fraction, making it impossible to recover the large amounts of soluble Set2. To overcome this poor recovery, we developed a novel protein purification technique termed the filtration/immunoaffinity purification/mass spectrometry (FIM) method, which eliminates the need for centrifugation. Using the FIM method, in which whole cell lysates were filtered consecutively through eight different pore sizes (53-0.8µm), a high yield of soluble FLAG-tagged Set2 was obtained from fission yeast. The technique was suitable for affinity purification and produced a low background. A mass spectrometry analysis of anti-FLAG immunoprecipitated proteins revealed that Rpb1, Rpb2 and Rpb3, which have all been reported previously as components of the budding yeast Set2 complex, were isolated from fission yeast using the FIM method. In addition, other subunits of RNA polymerase II and its phosphatase were also identified. In conclusion, the FIM method is valid for the efficient purification of protein complexes that separate into the insoluble chromatin pellet fraction during centrifugation.


Assuntos
Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromatografia Líquida/métodos , Filtração/métodos , Immunoblotting/métodos , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Schizosaccharomyces/química
12.
EMBO J ; 28(21): 3378-89, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19745812

RESUMO

Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.


Assuntos
Ciclina G/genética , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/metabolismo , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
13.
Biomolecules ; 13(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830746

RESUMO

DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Eucromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cromatina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
14.
J Biol Chem ; 286(40): 34809-19, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21840992

RESUMO

The yeast HO gene is tightly regulated, with multiple activators and coactivators needed to overcome repressive chromatin structures that form over this promoter. Coactivator binding is strongly interdependent, as loss of one factor sharply reduces recruitment of other factors. The Rpd3(L) histone deacetylase is recruited to HO at two distinct times during the cell cycle, first by Ash1 to the URS1 region of the promoter and then by SBF/Whi5/Stb1 to URS2. SBF itself is localized to only a subset of its potential binding sites in URS2, and this localization takes longer and is less robust than at other SBF target genes, suggesting that binding to the HO promoter is limited by chromatin structures that dynamically change as the cell cycle progresses. Ash1 only binds at the URS1 region of the promoter, but an ash1 mutation results in markedly increased binding of SBF and Rpd3(L) at URS2, some 450 bp distant from the site of Ash1 binding, suggesting these two regions of the promoter interact. An ash1 mutation also results in increased coactivator recruitment, Swi/Snf and Mediator localization in the absence of the normally required Gcn5 histone acetyltransferase, and HO expression even in the presence of a taf1 mutation affecting TFIID activity that otherwise blocks HO transcription. Ash1 therefore appears to play a central role in generating the strongly repressive environment at the HO promoter, which limits the binding of several coactivators at URS2 and TATA region.


Assuntos
Cromatina/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclo Celular , Cromatina/metabolismo , Endonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Mutação , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , TATA Box , Transcrição Gênica
15.
EMBO J ; 26(20): 4324-34, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17898805

RESUMO

Transcription factors with identical DNA-binding specificity often activate different genes in vivo. Yeast Ace2 and Swi5 are such activators, with targets we classify as Swi5-only, Ace2-only, or both. We define two unique regulatory modes. Ace2 and Swi5 both bind in vitro to Swi5-only genes such as HO, but only Swi5 binds and activates in vivo. In contrast, Ace2 and Swi5 both bind in vivo to Ace2-only genes, such as CTS1, but promoter-bound Swi5 fails to activate. We show that activation by Swi5 is prevented by the binding of the Forkhead factors Fkh1 and Fkh2, which recruit the Rpd3(Large) histone deacetylase complex to the CTS1 promoter. Global analysis shows that all Ace2-only genes are bound by both Ace2 and Swi5, and also by Fkh1/2. Genes normally activated by either Ace2 or Swi5 can be converted to Ace2-only genes by the insertion of Fkh-binding sites. Thus Fkh proteins, which function initially to activate SWI5 and ACE2, subsequently function as Swi5-specific antiactivators.


Assuntos
Proteínas de Ligação a DNA/química , Fatores de Transcrição Forkhead/metabolismo , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/metabolismo , Acetilação , Ciclo Celular , Imunoprecipitação da Cromatina , DNA/química , Regulação Fúngica da Expressão Gênica , Histonas/química , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química
16.
Cell Rep ; 36(7): 109540, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407404

RESUMO

FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains. Without Pob3, Spt16 recruitment is partially reduced, exhibiting a silencing defect and impaired H2A/H2B organization. Second, heterochromatin protein 1 (HP1)/Swi6 mediates Spt16 recruitment onto the heterochromatin by physical interaction of the Swi6 chromo-shadow domain (CSD) and Spt16 peptidase-like domains. Several CSD mutants are tested for Spt16 binding activity, and the charged loop connecting ß1 and ß2 is critical for Spt16 binding and heterochromatic silencing. Loss of these pathways causes a severe defect in H3K9 methylation and HP1/Swi6 localization in the pericentromeric region, exhibiting transcriptional silencing defects and disordered heterochromatin. Our findings suggest that FACT and HP1/Swi6 work intimately to regulate heterochromatin organization.


Assuntos
Heterocromatina/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Eucromatina/metabolismo , Inativação Gênica , Histonas/metabolismo , Complexos Multiproteicos/química , Mutação/genética , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Schizosaccharomyces pombe/química , Transcrição Gênica
17.
Genetics ; 178(2): 649-59, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245327

RESUMO

Chromatin-modifying factors regulate both transcription and DNA replication. The yFACT chromatin-reorganizing complex is involved in both processes, and the sensitivity of some yFACT mutants to the replication inhibitor hydroxyurea (HU) is one indication of a replication role. This HU sensitivity can be suppressed by disruptions of the SET2 or CHD1 genes, encoding a histone H3(K36) methyltransferase and a chromatin remodeling factor, respectively. The additive effect of set2 and chd1 mutations in suppressing the HU sensitivity of yFACT mutants suggests that these two factors function in separate pathways. The HU suppression is not an indirect effect of altered regulation of ribonucleotide reductase induced by HU. set2 and chd1 mutations also suppress the HU sensitivity of mutations in other genes involved in DNA replication, including CDC2, CTF4, ORC2, and MEC1. Additionally, a chd1 mutation can suppress the lethality normally caused by disruption of either MEC1 or RAD53 DNA damage checkpoint genes, as well as the lethality seen when a mec1 sml1 mutant is exposed to low levels of HU. The pob3 defect in S-phase progression is suppressed by set2 or chd1 mutations, suggesting that Set2 and Chd1 have specific roles in negatively regulating DNA replication.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/genética , Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Hidroxiureia/farmacologia , Metiltransferases/metabolismo , Mutagênese , Mutação , Ribonucleosídeo Difosfato Redutase/genética , Fase S , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
18.
Genes Genet Syst ; 94(1): 51-59, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30905891

RESUMO

Transcription factor II D (TFIID), a multiprotein complex consisting of TATA-binding protein (TBP) and 13-14 TBP-associated factors (Tafs), plays a central role in transcription and regulates nearly all class II genes. The N-terminal domain of Taf1p (TAND) can be divided into two subdomains, TAND1 and TAND2, which bind to the concave and convex surfaces of TBP, respectively. The interaction between TAND and TBP is thought to be regulated by TFIIA, activators and/or DNA during transcriptional activation, as the TAND1-bound form of TBP cannot bind to the TATA box. We previously demonstrated that Drosophila TAND1 binds to TBP with a much stronger affinity than yeast TAND1 and that the expression levels of full-length chimeric Taf1p, whose TAND1 is replaced with the Drosophila counterpart, can be varied in vivo by substituting several methionine residues downstream of TAND2 with alanine residues in various combinations. In this study, we examined the transcriptional activation of the GAL1-lacZ reporter or endogenous genes such as RNR3 or GAL1 in yeast cells expressing various levels of full-length chimeric Taf1p. The results showed that the substitution of TAND1 with the Drosophila counterpart in yeast TFIID weakened the transcriptional activation of GAL1-lacZ and RNR3 but not that of GAL1. These findings strongly support a model in which TBP must be released efficiently from TAND1 within TFIID upon transcriptional activation.


Assuntos
Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Ativação Transcricional , Animais , Drosophila melanogaster , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Domínios Proteicos , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética
19.
Mol Cell Biol ; 24(8): 3089-99, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060133

RESUMO

The general transcription factor TFIID is composed of TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). TFIID mediates the transcriptional activation of a subset of eukaryotic promoters. The N-terminal domain (TAND) of TAF1 protein (Taf1p) inhibits TBP by binding to its concave and convex surfaces. This study examines the role of the TAND in transcriptional regulation and tests whether the TAND is an autonomous regulator of TBP. The TAND binds to and regulates TBP function when it is fused to the amino or carboxy terminus of Taf1p, the amino or carboxy terminus of Taf5p, or the amino terminus of Taf11p. However, a carboxy-terminal fusion of the TAND and Taf11p is not compatible with several other TAF proteins, including Taf1p, in the TFIID complex. These results indicate that there is no or minimal geometric constraint on the ability of the TAND to function normally in transcriptional regulation as long as TFIID assembly is secured.


Assuntos
Regulação Fúngica da Expressão Gênica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Substâncias Macromoleculares , Modelos Genéticos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
20.
Transcription ; 8(1): 26-31, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27723431

RESUMO

Epigenetic marks determine cell fate via numerous reader proteins. H3K36 methylation is a common epigenetic mark that is thought to be associated with the activities of the RNA polymerase 2 C-terminal domain. We discuss a novel silencing mechanism regulated by Set2-dependent H3K36 methylation that involves exosome-dependent RNA processing.


Assuntos
Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Epigênese Genética , Éxons , Histonas/química , Humanos , Lisina/química , Masculino , Metilação , Domínios Proteicos , RNA Polimerase II/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA