Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Chemistry ; 28(70): e202202457, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109342

RESUMO

10,11-Bis[bis(4-dimethylaminophenyl)methylene]dibenzo[bf]thiepin (1) and -oxepin (2) were prepared as stable yellow crystalline compounds, which are the cyclic analogues of electron-donating hexaarylbutadienes. Upon two-electron oxidation, they are reversibly transformed into the title dications (12+ and 22+ ) exhibiting near-infrared (NIR) absorptions, which were also isolated as stable salts. These redox pairs can serve as new entries into less well-explored organic NIR-electrochromic systems, and the separation of redox peaks (electrochemical bistability) was attained for 1/12+ and 2/22+ , thanks to drastic geometrical changes between neutral and dicationic states, as revealed by a series of X-ray analyses. Thiepin-S,S-dioxide analogue (3/32+ ) exhibits quite similar dynamic redox behavior due to nonaromatic nature of the dibenzothiepin and -oxepin unit in 12+ and 22+ , whereas the thiepin-S-oxide derivative (4/42+ ) does not exhibit bistability due to the smaller change in geometry upon electron transfer, showing that a subtle change of a bridging atom in the central seven-membered ring can modify the redox properties.

2.
Inorg Chem ; 61(35): 14067-14074, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006962

RESUMO

In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.

3.
Nature ; 517(7532): 68-72, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25557713

RESUMO

Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanoestruturas/química , Eletricidade Estática , Anisotropia , Biomimética , Cartilagem Articular/química , Nióbio/química , Titânio/química
4.
Nat Mater ; 18(3): 266-272, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664694

RESUMO

The self-assembly of organic molecules into supramolecular materials with structural ordering beyond the nanometre scale is challenging. Here, we report the spontaneous self-assembly of a chiral discotic triphenylene derivative into millimetre-sized droplets. The structure of the droplets is characterized by high positional and orientational ordering and a three-dimensional integrity similar to that of single crystals. Notwithstanding, these assemblies slide when placed on a vertical substrate demonstrating their fluid nature. X-ray imaging shows that during the sliding process the internal crystal-like structure is maintained and that the droplets undergo clockwise or counterclockwise unidirectional rotation, depending on the chirality of their molecular components. Rheological measurements suggest that this rotational behaviour might result from the distinct yield stress between the (R)- and (S)-enantiomers. Overall, our findings demonstrate that molecular chirality can determine the movement direction of a supramolecular structure, thus expanding the fundamental understanding of the structure and dynamics of soft materials.

5.
Chemistry ; 25(12): 3020-3031, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30614084

RESUMO

Optimal control of gas adsorption properties in metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) remains a great challenge in the field of materials science. An efficient strategy to capture electron-acceptor-type gas molecules such as nitrogen monooxide (NO) is to use host-guest interactions by utilizing electron-donor-type MOFs/PCPs as host frameworks. Herein, we focus on a highly electron-donating chain compound by using the paddlewheel-type [Ru2 II,II ] complex [Ru2 (2,4,5-Me3 PhCO2 )4 ] (2,4,5-Me3 PhCO2 - =2,4,5-trimethylbenzoate) with the phenazine (phz) linker: [Ru2 (2,4,5-Me3 PhCO2 )4 (phz)] (1). Compound 1 exhibited a specific gated adsorption for NO under gas pressures greater than 60 kPa at 121 K, which finally resulted in approximately seven molar equivalents being taken up at 100 kPa followed by four molar equivalents remaining under vacuum at 121 K; its Rh isomorph (2) with weaker donation ability was inactive for NO. When the sample of 1⊃4 NO was heated to room temperature, the compound underwent a crystal-to-crystal phase transition to give [Ru2 (2,4,5-Me3 PhCO2 )4 (NO)2 ](phz) (1-NO), involving a post-synthetic nitrosylation on the [Ru2 ] unit, accompanied by an eventful site-exchange with phz. This drastic event, which is dependent on the NO pressure, temperature, and time, was coherently monitored by using several different in situ techniques, revealing that the stabilization of NO molecules in nanosized pores dynamically and stepwisely occurred with the support of strong electronic/magnetic host-guest interactions.

6.
J Stroke Cerebrovasc Dis ; 28(7): 1979-1986, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982718

RESUMO

BACKGROUND: Hemorrhagic infarction (HI) is among the most severe complications that can occur following the administration of intravenous recombinant tissue plasminogen activator (rt-PA). In the present study, we aimed to determine the optimal cut-off points of blood pressure (BP) for HI after rt-PA treatment, and to compare our findings with those for other prediction models. METHODS: We analyzed data from 109 consecutive patients with stroke treated at our hospital between 2009 and 2016. HI was confirmed via computed tomography or magnetic resonance imaging. Patients were classified into a symptomatic HI group, an asymptomatic HI group, and a non-HI group. BP was measured on admission and before rt-PA treatment. Glucose Race Age Sex Pressure Stroke Severity (GRASPS) and Totaled Health Risks in Vascular Events (THRIVE) scores were also calculated. Receiver operating characteristic (ROC) analysis was used to determine factors associated with symptomatic and asymptomatic HI. RESULTS: Among the 109 total patients, 25 patients developed symptomatic HI, while 22 patients developed asymptomatic HI. ROC analysis for predicting symptomatic and asymptomatic HI revealed that the area under the curve for pretreatment systolic BP (SBP) was .88 (95% confidence interval[CI]: .83-.94), while those for GRASPS and THRIVE scores were .75 (95% CI: .66-.85) and .69 (95% CI: .59-.79), respectively. We identified an optimal cut-off point of 160 mm Hg (sensitivity: 82.3%; specificity: 76.6%; diagnostic accuracy: 80.0%; positive predictive value: 76.6%; negative predictive value: 82.5%). CONCLUSIONS: Pre-treatment SBP may be a simple predictor of symptomatic and asymptomatic HI in patients with stroke undergoing rt-PA treatment.


Assuntos
Pressão Sanguínea , Fibrinolíticos/efeitos adversos , Hemorragias Intracranianas/induzido quimicamente , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Feminino , Fibrinolíticos/administração & dosagem , Humanos , Infusões Intravenosas , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/efeitos adversos , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento
7.
J Am Chem Soc ; 140(41): 13497-13502, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30281289

RESUMO

A surprising terminal-group effect on the structural and physical properties of an amorphous polymer is reported. We recently demonstrated that triptycene derivatives with substituents at the 1,8,13-positions show specific self-assembly behavior, enabling the formation of a well-defined "2D + 1D" structure based on nested hexagonal packing of the triptycenes. Upon terminal functionalization with a 1,8-substituted triptycene (1,8-Trip), a liquid polymer, polydimethylsiloxane (PDMS, Mn = 18-24 kDa), turned into a highly viscous solid that exhibits birefringence at 25 °C. Small-angle and wide-angle X-ray scattering measurements revealed that the resulting telechelic PDMS assembles into a 2D + 1D structure, where layers of PDMS domains, formed between 2D assemblies of the triptycene termini, stack into a 1D multilayer structure with a layer spacing of 18-20 nm. Because of this structuring, the complex viscosity of the telechelic PDMS was dramatically enhanced, providing a value 4 orders of magnitude greater than that of the original PDMS. Remarkably, the structural and physical properties of PDMS were hardly changed upon terminal functionalization with another regioisomer of triptycene (1,4-Trip), which differs only in the substitution pattern.

8.
Phys Rev Lett ; 119(6): 065701, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949642

RESUMO

A quasi-one-dimensional organic charge-transfer salt (TMTTF)_{2}PF_{6} undergoes a multistep phase transition as the temperature decreases. One of these transitions is called a "structureless transition," and these detailed structures were unknown for many years. With synchrotron x-ray diffraction, we observed a slight structural difference owing to the effect of charge-order transition between two TMTTF molecules in a dimer, which corresponds to the charge transfer δ_{CO}=0.20e. The two-dimensional Wigner crystallization was determined from an electron density analysis using core differential Fourier synthesis. Furthermore, we found that the ground state due to tetramerization, called the spin Peierls phase, is a three-dimensional transition with interchain correlation.

9.
Chemistry ; 23(6): 1291-1298, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27739119

RESUMO

Wide-angle X-ray scattering experiments and all-atomistic molecular dynamics calculations were performed to elucidate the detailed structure of bilayer vesicles constructed by self-assembly of an amphiphilic palladium NCN-pincer complex. We found an excellent agreement between the experimental and calculated X-ray spectra, and between the membrane thickness determined from a TEM image and that calculated from an electron-density profile, which indicated that the calculated structure was highly reliable. The analysis of the simulated bilayer structure showed that in general the membrane was softer than other phospholipid bilayer membranes. In this bilayer assemblage, the degree of alignment of complex molecules in the bilayer membrane was quite low. An analysis of the electron-density profile shows that the bilayer assemblage contains a space through which organic molecules can exit. Furthermore, the catalytically active center is near this space and is easily accessible by organic molecules, which permits the bilayer membrane to act as a nanoreactor. The free energy of permeation of water through the bilayer membrane of the amphiphilic complex was 12 kJ mol-1 , which is much lower than that for phospholipid bilayer membranes in general. Organic molecules are expected to pass though the bilayer membrane. The self-assembled vesicles were shown to be catalytically active in a Miyaura-Michael reaction in water.

10.
Chemistry ; 23(1): 57-60, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787925

RESUMO

The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

11.
Langmuir ; 33(19): 4675-4681, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437112

RESUMO

Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

12.
Biochemistry ; 55(28): 3888-98, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27347790

RESUMO

Many drugs are oxidized by membrane protein cytochrome P450 (CYP) enzymes during their metabolism process. CYPs are located mainly in endoplasmic reticulum (ER) membranes. Recent studies have suggested that CYP substrate drugs first bind the lipid bilayers of ER membranes and then the drugs reach the active site of CYP by way of an access channel. The entrance of the channel is located in the hydrophobic regions of the lipid bilayers. One of the features of the ER membrane is a cholesterol content that is lower than those of other biomembranes. In this study, the cholesterol concentration dependence of the interaction of a CYP substrate drug, chlorzoxazone (CZX), with model membranes composed of phosphatidylcholine (PC) and cholesterol was examined via differential scanning calorimetry (DSC), UV-visible spectroscopy, and X-ray diffraction. Experimental results indicated that CZX can bind to pure PC bilayers in the absence of cholesterol and that, by contrast, a high cholesterol concentration (30-50 mol %) tends to prevent CZX from binding to PC bilayers. Interestingly, the effect of cholesterol on the binding and insertion of CZX was biphasic. In the case of palmitoyloleoylphosphatidylcholine (POPC) bilayers containing 5-10 mol % cholesterol, the CZX's binding and penetration into the bilayer were found to be greater than those with pure POPC bilayers. The concentration of 5-10 mol % nearly corresponds to the cholesterol concentration of ER membranes. The low cholesterol contents (12-20 mol %) of ER membranes might be the most suitable for the CYP drug metabolism process in ER membranes.


Assuntos
Clorzoxazona/metabolismo , Colesterol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/metabolismo , Relação Dose-Resposta a Droga
13.
J Am Chem Soc ; 138(9): 3022-30, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26876504

RESUMO

The adsorptive separation of C2H2 and CO2 via porous materials is nontrivial due to the close similarities of their boiling points and kinetic diameters. In this work, we describe a new flexible porous coordination polymer (PCP) [Mn(bdc)(dpe)] (H2bdc = 1,4-benzenedicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene) having zero-dimensional pores, which shows an adsorbate discriminatory gate effect. The compound shows gate opening type abrupt adsorption for C2H2 but not for CO2, leading to an appreciable selective adsorption of CO2 over C2H2 at near ambient temperature (273 K). The origin of this unique selectivity, as unveiled by in situ adsorption-X-ray diffraction experiments and density functional theory calculations, is due to vastly different orientations between the phenylene ring of bdc and each gas in the nanopores. The structural change by photochemical transformation of this PCP via [2 + 2] photodimerization leads to the removal of inverse CO2/C2H2 selectivity, verifying the mechanism of the guest discriminatory gate effect.

14.
J Am Chem Soc ; 138(36): 11727-33, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27549349

RESUMO

Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions.

15.
Nat Mater ; 14(10): 1002-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259107

RESUMO

Electrostatic repulsion, long used for attenuating surface friction, is not typically employed for the design of bulk structural materials. We recently developed a hydrogel with a layered structure consisting of cofacially oriented electrolyte nanosheets. Because this unusual geometry imparts a large anisotropic electrostatic repulsion to the hydrogel interior, the hydrogel resisted compression orthogonal to the sheets but readily deformed along parallel shear. Building on this concept, here we show a hydrogel actuator that operates by modulating its anisotropic electrostatics in response to changes of electrostatic permittivity associated with a lower critical solution temperature transition. In the absence of substantial water uptake and release, the distance between the nanosheets rapidly expands and contracts on heating and cooling, respectively, so that the hydrogel lengthens and shortens significantly, even in air. An L-shaped hydrogel with an oblique nanosheet configuration can thus act as a unidirectionally proceeding actuator that operates without the need for external physical biases.

16.
Langmuir ; 32(41): 10545-10550, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27673490

RESUMO

Surface-specific liquid crystal (LC) nanostructures provide a unique platform for studying surface-wetting phenomena and also for technological applications. The most important studies on LC properties are related to bulk alignment, surface anchoring, and so on. Here, we study an LC system with a nematic liquid crystal (NLC) on a perfluoropolymer-coated substrate, in which a discontinuous bulk orientational transition has recently been found. Using free-energy analysis based on experimental results of the newly-conducted grazing-incidence X-ray diffraction (GI-XRD) measurements, we have confirmed a thermodynamic growth process of smectic liquid crystalline wetting nanosheets on the surface and successfully explained that a frustrated surface of planar and vertical anchoring states accompanied by an elastic energy cost kinetically triggers the bulk reorientation in the first-order manner. This interfacial bottom-up process may offer a general insight into how interfacial hierarchical molecular architectures alter the bulk properties of matter thermodynamically.

17.
Inorg Chem ; 55(22): 12085-12092, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27934304

RESUMO

On-demand design of porous frameworks for selective capture of specific gas molecules, including toxic gas molecules such as nitric oxide (NO), is a very important theme in the research field of molecular porous materials. Herein, we report the achievement of highly selective NO adsorption through chemical doping in a framework (i.e., solid solution approach): the highly electron donating unit [Ru2(o-OMePhCO2)4] (o-OMePhCO2- = o-anisate) was transplanted into the structurally flexible chain framework [Ru2(4-Cl-2-OMePhCO2)4(phz)] (0; 4-Cl-2-OMePhCO2- = 4-chloro-o-anisate and phz = phenazine) to obtain a series of doped compounds, [{Ru2(4-Cl-2-OMePhCO2)4}1-x{Ru2(o-OMePhCO2)4}x(phz)] (x = 0.34, 0.44, 0.52, 0.70, 0.81, 0.87), with [Ru2(o-OMePhCO2)4(phz)] (1) as x = 1. The original compound 1 was made purely from a "highly electron donating unit" but had no adsorption capability for gases because of its nonporosity. Meanwhile, the partial transplant of the electronically advantageous [Ru2(o-OMePhCO2)4] unit with x = 0.34-0.52 in 0 successfully enhanced the selective adsorption capability of NO in an identical structurally flexible framework; an uptake at 95 kPa that was 1.7-3 mol/[Ru2] unit higher than that of the original 0 compound was achieved (121 K). The solid solution approach is an efficient means of designing purposeful porous frameworks.

18.
Phys Chem Chem Phys ; 18(23): 15874-83, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27240951

RESUMO

Thermoelectric materials can interconvert heat and electricity, and the extraordinary thermoelectric properties of lead chalcogenides (PbX, X = S, Se, Te) attract immense scientific interest. A key topic is the role of the cation in reaching a very low thermal conductivity necessary for efficient energy conversion. Here we present new structural insights about the deceptively simple rock-salt lead chalcogenides through a comparative multi-temperature synchrotron powder X-ray diffraction study. For the first time, the presence of anisotropic microstrain broadening as well as lead vacancies are quantified for all three compounds. The microstrain implies extended breakage of cubic symmetry as a sign of the incipient ferroelectric nature of PbX. The degree of microstrain is correlated to the transition pressure of a symmetry reducing phase transition, and this trend can be explained by anion mediated s-p hybridization on lead. The observed number of vacancies is greatest for PbS (4-8%), but two samples of PbS show different cation occupancy, and thus sample-dependent vacancies might be the property that unifies conflicting results reported for PbX. Gram-Charlier analysis identifies a local non-spherical distribution of Pb; however, model unbiased maximum entropy analysis indicates that any static displacement of Pb, if present, is less than 0.2 Å at 100 K.

19.
Nature ; 466(7303): 221-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20485340

RESUMO

The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition, which is governed by the role of electron correlations characteristic of high-temperature superconducting materials other than fullerides.

20.
J Am Chem Soc ; 137(35): 11498-506, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26302312

RESUMO

Understanding the role that crystal imperfections or defects play on the physical properties of a solid material is important for any application. In this report, the highly unique crystal structure of the metal-organic framework (MOF) zirconium 2-sulfoterephthalate is presented. This MOF contains a large number of partially occupied ligand and metal cluster sites which directly affect the physical properties of the material. The partially occupied ligand positions give rise to a continuum of pore sizes within this highly porous MOF, supported by N2 gas sorption and micropore analysis. Furthermore, this MOF is lined with sulfonic acid groups, implying a high proton concentration in the pore, but defective zirconium clusters are found to be effective proton trapping sites, which was investigated by a combination of AC impedance analysis to measure the proton conductivity and DFT calculations to determine the solvation energies of the protons in the pore. Based on the calculations, methods to control the pKa of the clusters and improve the conductivity by saturating the zirconium clusters with strong acids were utilized, and a 5-fold increase in proton conductivity was achieved using these methods. High proton conductivity of 5.62 × 10(-3) S cm(-1) at 95% relative humidity and 65 °C could be achieved, with little change down to 40% relative humidity at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA