Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 185(5): 755-758, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245477

RESUMO

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Faculdades de Medicina
2.
Cell ; 166(2): 451-467, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419872

RESUMO

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.


Assuntos
Mesoderma/citologia , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Coração/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Linha Primitiva/metabolismo , Análise de Célula Única , Somitos/metabolismo , Células-Tronco , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
3.
J Cell Sci ; 137(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294065

RESUMO

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Assuntos
Proteínas de Membrana , Microglia , Animais , Microglia/metabolismo , Proteínas de Membrana/metabolismo , Cloretos/metabolismo , Peixe-Zebra/metabolismo , Prótons , Fagócitos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
4.
Glia ; 72(2): 289-299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37767930

RESUMO

Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Bainha de Mielina , Oligodendroglia , Proteínas de Peixe-Zebra , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
5.
Hum Mutat ; 43(9): 1216-1223, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485770

RESUMO

Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.


Assuntos
Doença de Charcot-Marie-Tooth , Neuregulina-1 , Animais , Axônios , Doença de Charcot-Marie-Tooth/genética , Humanos , Bainha de Mielina , Neuregulina-1/genética , Células de Schwann , Peixe-Zebra/genética
6.
Development ; 144(1): 115-127, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913637

RESUMO

Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity.


Assuntos
Aorta/embriologia , Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Pericitos/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Membrana Basal/citologia , Embrião não Mamífero , Neovascularização Fisiológica/genética , Pericitos/citologia , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/genética , Peixe-Zebra/genética
7.
Genes Dev ; 26(12): 1312-25, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22677548

RESUMO

Owing to their covalent modification by cholesterol and palmitate, Hedgehog (Hh) signaling proteins are localized predominantly to the plasma membrane of expressing cells. Yet Hh proteins are also capable of mobilizing to and eliciting direct responses from distant cells. The zebrafish you gene, identified genetically >15 years ago, was more recently shown to encode a secreted glycoprotein that acts cell-nonautonomously in the Hh signaling pathway by an unknown mechanism. We investigated the function of the protein encoded by murine Scube2, an ortholog of you, and found that it mediates release in soluble form of the mature, cholesterol- and palmitate-modified Sonic hedgehog protein signal (ShhNp) when added to cultured cells or purified detergent-resistant membrane microdomains containing ShhNp. The efficiency of Scube2-mediated release of ShhNp is enhanced by the palmitate adduct of ShhNp and by coexpression in ShhNp-producing cells of mDispatchedA (mDispA), a transporter-like protein with a previously defined role in the release of lipid-modified Hh signals. The structural determinants of Scube2 required for its activity in cultured cell assays match those required for rescue of you mutant zebrafish embryos, and we thus conclude that the role of Scube/You proteins in Hh signaling in vivo is to facilitate the release and mobilization of Hh proteins for distant action.


Assuntos
Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Sistema Livre de Células , Células Cultivadas , Colesterol/metabolismo , Meios de Cultura/farmacologia , Detergentes/farmacologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Palmitatos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade , Peixe-Zebra
8.
Am J Hum Genet ; 96(6): 955-61, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26004201

RESUMO

Arthrogryposis multiplex congenita is defined by the presence of contractures across two or more major joints and results from reduced or absent fetal movement. Here, we present three consanguineous families affected by lethal arthrogryposis multiplex congenita. By whole-exome or targeted exome sequencing, it was shown that the probands each harbored a different homozygous mutation (one missense, one nonsense, and one frameshift mutation) in GPR126. GPR126 encodes G-protein-coupled receptor 126, which has been shown to be essential for myelination of axons in the peripheral nervous system in fish and mice. A previous study reported that Gpr126(-/-) mice have a lethal arthrogryposis phenotype. We have shown that the peripheral nerves in affected individuals from one family lack myelin basic protein, suggesting that this disease in affected individuals is due to defective myelination of the peripheral axons during fetal development. Previous work has suggested that autoproteolytic cleavage is important for activating GPR126 signaling, and our biochemical assays indicated that the missense substitution (p.Val769Glu [c.2306T>A]) impairs autoproteolytic cleavage of GPR126. Our data indicate that GPR126 is critical for myelination of peripheral nerves in humans. This study adds to the literature implicating defective axoglial function as a key cause of severe arthrogryposis multiplex congenita and suggests that GPR126 mutations should be investigated in individuals affected by this disorder.


Assuntos
Artrogripose/genética , Artrogripose/patologia , Mutação de Sentido Incorreto/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Sequência de Bases , Exoma/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Fibras Nervosas Mielinizadas/patologia , Linhagem , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Development ; 142(23): 4119-28, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459222

RESUMO

Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Dedos de Zinco , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Linhagem da Célula , Movimento Celular , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Mutação , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição , Proteínas de Peixe-Zebra/genética
10.
Development ; 140(15): 3167-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804499

RESUMO

In peripheral nerves, Schwann cells form the myelin sheath, which allows the efficient propagation of action potentials along axons. The transcription factor Krox20 regulates the initiation of myelination in Schwann cells and is also required to maintain mature myelin. The adhesion G protein-coupled receptor (GPCR) Gpr126 is essential for Schwann cells to initiate myelination, but previous studies have not addressed the role of Gpr126 signaling in myelin maturation and maintenance. Through analysis of Gpr126 in zebrafish, we define two distinct mechanisms controlling the initiation and maturation of myelin. We show that gpr126 mutant Schwann cells elaborate mature myelin sheaths and maintain krox20 expression for months, provided that the early signaling defect is bypassed by transient elevation of cAMP. At the onset of myelination, Gpr126 and protein kinase A (PKA) function as a switch that allows Schwann cells to initiate krox20 expression and myelination. After myelination is initiated, krox20 expression is maintained and myelin maturation proceeds independently of Gpr126 signaling. Transgenic analysis indicates that the Krox20 cis-regulatory myelinating Schwann cell element (MSE) becomes active at the onset of myelination and that this activity is dependent on Gpr126 signaling. Activity of the MSE declines after initiation, suggesting that other elements are responsible for maintaining krox20 expression in mature nerves. We also show that elevated cAMP does not initiate myelination in the absence of functional Neuregulin 1 (Nrg1) signaling. These results indicate that the mechanisms regulating the initiation of myelination are distinct from those mediating the maturation and maintenance of myelin.


Assuntos
Bainha de Mielina/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Expressão Gênica , Genes erbB-2 , Sistema da Linha Lateral/embriologia , Sistema da Linha Lateral/fisiologia , Mutação , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptores Acoplados a Proteínas G/genética , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
J Neurosci ; 34(44): 14717-32, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355224

RESUMO

Mutations in Kinesin proteins (Kifs) are linked to various neurological diseases, but the specific and redundant functions of the vertebrate Kifs are incompletely understood. For example, Kif5A, but not other Kinesin-1 heavy-chain family members, is implicated in Charcot-Marie-Tooth disease (CMT) and Hereditary Spastic Paraplegia (HSP), but the mechanism of its involvement in the progressive axonal degeneration characteristic of these diseases is not well understood. We report that zebrafish kif5Aa mutants exhibit hyperexcitability, peripheral polyneuropathy, and axonal degeneration reminiscent of CMT and HSP. Strikingly, although kif5 genes are thought to act largely redundantly in other contexts, and zebrafish peripheral neurons express five kif5 genes, kif5Aa mutant peripheral sensory axons lack mitochondria and degenerate. We show that this Kif5Aa-specific function is cell autonomous and is mediated by its C-terminal tail, as only Kif5Aa and chimeric motors containing the Kif5Aa C-tail can rescue deficits. Finally, concurrent loss of the kinesin-3, kif1b, or its adaptor kbp, exacerbates axonal degeneration via a nonmitochondrial cargo common to Kif5Aa. Our results shed light on Kinesin complexity and reveal determinants of specific Kif5A functions in mitochondrial transport, adaptor binding, and axonal maintenance.


Assuntos
Axônios/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Transporte Axonal/fisiologia , Cinesinas/genética , Mitocôndrias/genética , Degeneração Neural/genética , Degeneração Neural/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Development ; 138(13): 2673-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21613327

RESUMO

In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.


Assuntos
Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Nervo Coclear/anormalidades , Nervo Coclear/metabolismo , Nervo Coclear/ultraestrutura , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Schwann/metabolismo
13.
Development ; 138(21): 4639-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965611

RESUMO

During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.


Assuntos
Movimento Celular/fisiologia , Neuregulina-1/metabolismo , Isoformas de Proteínas/metabolismo , Células de Schwann/fisiologia , Peixe-Zebra/anatomia & histologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Humanos , Dados de Sequência Molecular , Neuregulina-1/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Células de Schwann/citologia , Alinhamento de Sequência , Quimeras de Transplante , Peixe-Zebra/embriologia
14.
Proc Natl Acad Sci U S A ; 108(19): 8009-14, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518878

RESUMO

During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and ßII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and ßII spectrin in Schwann cells integrate the neuron-glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.


Assuntos
Bainha de Mielina/fisiologia , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Espectrina/fisiologia , Actinas/antagonistas & inibidores , Actinas/fisiologia , Animais , Sequência de Bases , Polaridade Celular , Citoesqueleto/fisiologia , Técnicas de Silenciamento de Genes , Mutação , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Nervo Isquiático/citologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Espectrina/antagonistas & inibidores , Espectrina/deficiência , Espectrina/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
15.
Development ; 137(21): 3643-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20876648

RESUMO

Although much is known about the initial construction of the peripheral nervous system (PNS), less well understood are the processes that maintain the position and connections of nerves during postembryonic growth. Here, we show that the posterior lateral line nerve in zebrafish initially grows in the epidermis and then rapidly transitions across the epidermal basement membrane into the subepidermal space. Our experiments indicate that Schwann cells, which myelinate axons in the PNS, are required to reposition the nerve. In mutants lacking Schwann cells, the nerve is mislocalized and the axons remain in the epidermis. Transplanting wild-type Schwann cells into these mutants rescues the position of the nerve. Analysis of chimeric embryos suggests that the process of nerve relocalization involves two discrete steps - the degradation and recreation of the epidermal basement membrane. Although the outgrowth of axons is normal in mutants lacking Schwann cells, the nerve becomes severely disorganized at later stages. In wild-type embryos, exclusion of the nerve from the epidermis isolates axons from migration of their targets (sensory neuromasts) within the epidermis. Without Schwann cells, axons remain within the epidermis and are dragged along with the migrating neuromasts. Our analysis of the posterior lateral line system defines a new process in which Schwann cells relocate a nerve beneath the epidermal basement membrane to insulate axons from the postembryonic remodeling of their targets.


Assuntos
Movimento Celular/fisiologia , Epiderme/crescimento & desenvolvimento , Epiderme/inervação , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Animais , Animais Geneticamente Modificados , Membrana Basal/inervação , Membrana Basal/fisiologia , Embrião não Mamífero , Modelos Biológicos , Regeneração Nervosa/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
16.
Nature ; 450(7167): E1-2; discussion E2-4, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994032

RESUMO

In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.


Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Mães , Ligantes da Sinalização Nodal , Ovário/metabolismo , Óvulo/metabolismo , Splicing de RNA , Reprodutibilidade dos Testes , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
17.
J Cell Biol ; 178(5): 721-3, 2007 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17724116

RESUMO

Interactions between Schwann cells and axons are critical for the development and function of myelinated axons. Two recent studies (see Maurel et al. on p. 861 of this issue; Spiegel et al., 2007) report that the nectin-like (Necl) proteins Necl-1 and -4 are internodal adhesion molecules that are critical for myelination. These studies suggest that Necl proteins mediate a specific interaction between Schwann cells and axons that allows proper communication of the signals that trigger myelination.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Adesão Celular/fisiologia , Células de Schwann/metabolismo , Animais , Axônios/ultraestrutura , Moléculas de Adesão Celular Neuronais/genética , Bainha de Mielina/metabolismo , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Células de Schwann/citologia
18.
Cell Rep ; 41(7): 111669, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384112

RESUMO

The signaling mechanisms neurons use to modulate myelination of circuits in the central nervous system (CNS) are only partly understood. Through analysis of isoform-specific neuregulin1 (nrg1) mutants in zebrafish, we demonstrate that nrg1 type II is an important regulator of myelination of two classes of spinal cord interneurons. Surprisingly, nrg1 type II expression is prominent in unmyelinated Rohon-Beard sensory neurons, whereas myelination of neighboring interneurons is reduced in nrg1 type II mutants. Cell-type-specific loss-of-function studies indicate that nrg1 type II is required in Rohon-Beard neurons to signal to other neurons, not oligodendrocytes, to modulate spinal cord myelination. Together, our data support a model in which unmyelinated neurons express Nrg1 type II proteins to regulate myelination of neighboring neurons, a mode of action that may coordinate the functions of unmyelinated and myelinated neurons in the CNS.


Assuntos
Sistema Nervoso Central , Peixe-Zebra , Animais , Células Receptoras Sensoriais/fisiologia , Bainha de Mielina/metabolismo , Interneurônios
19.
Sci Adv ; 8(35): eabp8321, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044568

RESUMO

As the primary phagocytic cells of the central nervous system, microglia exquisitely regulate their lysosomal activity to facilitate brain development and homeostasis. However, mechanisms that coordinate lysosomal activity with microglia development, chemotaxis, and function remain unclear. Here, we show that embryonic macrophages require the lysosomal guanosine triphosphatase (GTPase) RagA and the GTPase-activating protein Folliculin to colonize the brain in zebrafish. We demonstrate that embryonic macrophages in rraga mutants show increased expression of lysosomal genes but display significant down-regulation of immune- and chemotaxis-related genes. Furthermore, we find that RagA and Folliculin repress the key lysosomal transcription factor Tfeb and its homologs Tfe3a and Tfe3b in the macrophage lineage. Using RNA sequencing, we establish that Tfeb and Tfe3 are required for activation of lysosomal target genes under conditions of stress but not for basal expression of lysosomal pathways. Collectively, our data define a lysosomal regulatory circuit essential for macrophage development and function in vivo.

20.
ACS Chem Biol ; 17(8): 2024-2030, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35839076

RESUMO

cAMP is a ubiquitous second messenger with many functions in diverse organisms. Current cAMP sensors, including Föster resonance energy transfer (FRET)-based and single-wavelength-based sensors, allow for real time visualization of this small molecule in cultured cells and in some cases in vivo. Nonetheless the observation of cAMP in living animals is still difficult, typically requiring specialized microscopes and ex vivo tissue processing. Here we used ligand-dependent protein stabilization to create a new cAMP sensor. This sensor allows specific and sensitive detection of cAMP in living zebrafish embryos, which may enable new understanding of the functions of cAMP in living vertebrates.


Assuntos
Técnicas Biossensoriais , AMP Cíclico , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ligantes , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA