Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843312

RESUMO

Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Streptococcus mitis , Streptococcus pneumoniae , Streptococcus mitis/genética , Humanos , Streptococcus pneumoniae/genética , Filogenia , Genética Populacional
2.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915693

RESUMO

Background: Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated quality control metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficient retrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currently available consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storage is fundamentally unsuitable and a more scalable approach is needed. Results: We present the VCF Zarr specification, an encoding of the VCF data model using Zarr which makes retrieving subsets of the data much more efficient. Zarr is a cloud-native format for storing multi-dimensional data, widely used in scientific computing. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialised methods for storing genotype data in terms of compression ratios and calculation performance. We demonstrate the VCF Zarr format (and the vcf2zarr conversion utility) on a subset of the Genomics England aggV2 dataset comprising 78,195 samples and 59,880,903 variants, with a 5X reduction in storage and greater than 300X reduction in CPU usage in some representative benchmarks. Conclusions: Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these files incurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential to greatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation data directly from cloud-based object stores.

3.
Nat Commun ; 14(1): 7967, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042927

RESUMO

As the continent of origin for our species, Africa harbours the highest levels of diversity anywhere on Earth. However, many regions of Africa remain under-sampled genetically. Here we present 350 whole genomes from Angola and Mozambique belonging to ten Bantu ethnolinguistic groups, enabling the construction of a reference variation catalogue including 2.9 million novel SNPs. We investigate the emergence of Bantu speaker population structure, admixture involving migrations across sub-Saharan Africa and model the demographic histories of Angolan and Mozambican Bantu speakers. Our results bring together concordant views from genomics, archaeology, and linguistics to paint an updated view of the complexity of the Bantu Expansion. Moreover, we generate reference panels that better represents the diversity of African populations involved in the trans-Atlantic slave trade, improving imputation accuracy in African Americans and Brazilians. We anticipate that our collection of genomes will form the foundation for future African genomic healthcare initiatives.


Assuntos
População Negra , Polimorfismo de Nucleotídeo Único , Humanos , Angola , Moçambique , População Negra/genética , Negro ou Afro-Americano , Genética Populacional , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA