RESUMO
Atomic force microscopy-based nanoindentation is used to image and probe the local mechanical properties of thin disordered nanoparticle packings. The probed region is limited to the size of a few particles, and an individual particle can be loaded and displaced to a fraction of a single particle radius. The results demonstrate heterogeneous mechanical response that is location-dependent. The weak locations may be analogous to the "soft spots" previously predicted in glasses and other disordered packings.
RESUMO
The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt -1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.