Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 118(3): 717-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213282

RESUMO

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Assuntos
Antocianinas , Apiaceae , Genoma de Planta , Genômica , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomos de Plantas/genética
2.
Mol Breed ; 43(10): 73, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37795156

RESUMO

Tomato is a leading vegetable in modern agriculture, and with global warming, drought has become an important factor threatening tomato production. Mitogen-activated protein kinase 3 (MAPK3) plays an important role in plant disease and stress resistance. To clarify the downstream target proteins of SlMAPK3 and the mechanism of stress resistance in tomato, this study was conducted with the SlMAPK3-overexpressing lines OE-1 and OE-2 and the CRISPR/Cas9-mediated mutant lines slmapk3-1 and slmapk3-2 under PEG 6000-simulated drought. The results of yeast two-hybrid (Y2H), pull-down, and coimmunoprecipitation (Co-IP) assays confirmed that SlASR4 (NP_001269248.1) interacted with SlMAPK3. Analyses of the SlASR4 protein structure and SlASR4 expression under PEG 6000 and BTH stress revealed that SlASR4 has a highly conserved protein structural domain involved in the drought stress response under PEG 6000 treatment. The function of the SlASR4 and SlMAPK3 downstream target protein, in drought resistance in tomato plants, was identified by virus-induced gene silencing (VIGS). This study clarified that SlMAPK3 interacts with SlASR4 to positively regulate drought resistance in tomato plants.

3.
Genomics ; 112(6): 5254-5264, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976976

RESUMO

The NAC transcription factor participates in various biotic and abiotic stress responses and plays a critical role in plant development. Lignin is a water-insoluble dietary fiber, but it is second only to cellulose in abundance. Celery is the main source of dietary fiber, but its quality and production are limited by various abiotic stresses. Here, AgNAC1 containing the NAM domain was identified from celery. AgNAC1 was found to be a nuclear protein. Transgenic Arabidopsis thaliana plants hosting AgNAC1 have longer root lengths and stomatal axis lengths than the wide type (WT). The evidence from lignin determination and expression levels of lignin-related genes indicated that AgNAC1 plays a vital role in lignin biosynthesis. Furthermore, the results of the physiological characterization and the drought and salt treatments indicate that AgNAC1-overexpressing plants are significantly resistive to salt stress. Under drought and salt treatments, the AgNAC1 transgenic Arabidopsis thaliana plants presented increased superoxide dismutase (SOD) and peroxidase (POD) activities and decreased malondialdehyde (MDA) content and size of stomatal apertures relatively to the WT plants. The AgNAC1 served as a positive regulator in inducing the expression of stress-responsive genes. Overall, the overexpressing AgNAC1 enhanced the plants' resistance to salt stress and played a regulatory role in lignin accumulation.


Assuntos
Apium , Lignina/biossíntese , Proteínas de Plantas/fisiologia , Tolerância ao Sal/genética , Fatores de Transcrição/fisiologia , Apium/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/metabolismo , Homologia de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Crit Rev Biotechnol ; 38(2): 172-183, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28423952

RESUMO

Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.


Assuntos
Apium , Verduras , Apium/química , Apium/genética , Genes de Plantas , Genômica , Compostos Fitoquímicos , Melhoramento Vegetal , Pesquisa , Verduras/química , Verduras/genética
5.
Mol Genet Genomics ; 290(2): 671-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25416420

RESUMO

Oenanthe javanica is an aquatic perennial herb with known medicinal properties and an edible vegetable with high vitamin and mineral content. The understanding of the biology of O. javanica is limited by the absence of information on its genome, transcriptome, and small RNA. In this study, transcriptome sequencing and small RNA sequencing were performed to annotate function genes, develop SSR markers and analyze potential target genes of miRNAs in O. javanica. All reads with total nucleotides number of 1,440,321,408 bp were assembled into 58,072 transcripts and 40,208 unigenes. A total of 1,233 SSRs were identified from O. javanica. Generated unigenes were aligned against seven databases and annotated with functions. A total of 29 potential targets were predicted. Expression of 10 miRNAs and their corresponding target genes under abiotic stresses (heat, cold, salinity, and drought) was validated. All ten miRNAs were confirmed to response to abiotic stresses. A pair of miRNA and its target gene was found. This study can serve as a valuable resource for future studies on O. javanica, which may focus on novel gene discovery, SSR development, gene mapping, and miRNA-affected processes and pathways. This can promote the development of the useful medicinal properties of O. javanica in medical science.


Assuntos
MicroRNAs/genética , Oenanthe/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Repetições de Microssatélites , Anotação de Sequência Molecular , Interferência de RNA , Análise de Sequência de RNA , Estresse Fisiológico
6.
BMC Genomics ; 15: 242, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24673837

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small, non-coding RNAs of 20 to 24 nucleotides that regulate gene expression and responses to biotic and abiotic stress. Till now, no reports have previously been published concerning miRNAs in celery. RESULTS: Two small RNAs libraries were constructed from two celery varieties, 'Jinnan Shiqin' and 'Ventura', and characterized by deep sequencing. A total of 431 (418 known and 13 novel) and 346 (341 known and five novel) miRNAs were identified in celery varieties 'Jinnan Shiqin' and 'Ventura', respectively. Potential miRNA-target genes were predicted and annotated by screening diverse protein databases, including Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes. Significant differential expression between the two varieties was seen for 221 miRNAs. qRT-PCR was used to analyze the abundance of six miRNAs under cold and heat stress conditions. The results showed that miRNAs may have important functions in controlling temperature stress in celery. CONCLUSION: A large number of miRNAs were identified in celery, and their target genes, functional annotations, and gene expression patterns have been explored.These findings provide the first information on celery miRNAs and enhance understanding of celery miRNA regulatory mechanisms under extreme temperature stress.


Assuntos
Apium/genética , Apium/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , Estresse Fisiológico/genética , Temperatura , Sequência de Bases , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Anotação de Sequência Molecular , RNA Mensageiro/genética
7.
J Adv Res ; 46: 31-47, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35753652

RESUMO

BACKGROUND: Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW: Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW: Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.


Assuntos
Vias Biossintéticas , Biotecnologia , Licopeno/metabolismo , Engenharia Metabólica/métodos , Reatores Biológicos
8.
Hortic Res ; 10(7): uhad103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37786729

RESUMO

Carrot (Daucus carota) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of "Kurodagosun" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of CYP gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.

9.
PeerJ ; 10: e12976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233296

RESUMO

Ascorbic acid (AsA) is an important nutrient in celery, the conversion of D-mannose-1-P to GDP-D-mannose catalyzed by GDP-D-mannose pyrophosphorylase (GMPase) represents the first committed step in the biosynthesis of AsA. To clarify the function of the AgGMP gene of celery, the AgGMP gene was cloned from celery cv. 'Jinnan Shiqin' . It contains an open reading frame (ORF) with the length of 1,086 bp, encoding 361 amino acids. AgGMP protein was highly conserved among different plant species. Phylogenetic analysis demonstrated that the GMP proteins from celery and carrot belonged to the same branch. AgGMP protein was mainly composed of three α-helixes and certain random coils. No signal peptide was found in the AgGMP protein. The subcellular localization indicated that the AgGMP protein was located in the cytoplasm. The relative expression levels of AgGMP in 'Jinnan Shiqin' were significantly up-regulated at 2 h and 4 h under drought stress treatments. AsA contents in transgenic Arabidopsis lines hosting AgGMP gene were higher than that in wild type plants, and the root lengths were also longer in the MS medium containing 300 mM mannitol. The present study provides useful evidence for the functional involvement of AgGMP in regulating AsA accumulation and response to drought stress in celery.


Assuntos
Apium , Arabidopsis , Ácido Ascórbico , Arabidopsis/genética , Apium/genética , Manose/metabolismo , Proteínas de Plantas/química , Secas , Filogenia , Verduras/metabolismo
10.
Front Plant Sci ; 13: 1005261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330244

RESUMO

Solar greenhouses are important in the vegetable production and widely used for the counter-season production in the world. However, the CO2 consumed by crops for photosynthesis after sunrise is not supplemented and becomes chronically deficient due to the airtight structure of solar greenhouses. Vegetable crops cannot effectively utilize light resources under low-CO2 environment, and this incapability results in reduced photosynthetic efficiency and crop yield. We used cucumber as a model plant and generated several sets of transgenic cucumber plants overexpressing individual genes, including ß-carbonic anhydrase 1 (CsßCA1), ß-carbonic anhydrase 4 (CsßCA4), and sedoheptulose-1,7-bisphosphatase (CsSBP); fructose-1,6-bisphosphate aldolase (CsFBA), and CsßCA1 co-expressing plants; CsßCA4, CsSBP, and CsFBA co-expressing plants (14SF). The results showed that the overexpression of CsßCA1, CsßCA4, and 14SF exhibited higher photosynthetic and biomass yield in transgenic cucumber plants under low-CO2 environment. Further enhancements in photosynthesis and biomass yield were observed in 14SF transgenic plants under low-CO2 environment. The net photosynthesis biomass yield and photosynthetic rate increased by 49% and 79% compared with those of the WT. However, the transgenic cucumbers of overexpressing CsFBA and CsSBP showed insignificant differences in photosynthesis and biomass yield compared with the WT under low-CO2.environment. Photosynthesis, fluorescence parameters, and enzymatic measurements indicated that CsßCA1, CsßCA4, CsSBP, and CsFBA had cumulative effects in photosynthetic carbon assimilation under low-CO2 environment. Co-expression of this four genes (CsßCA1, CsßCA4, CsSBP, and CsFBA) can increase the carboxylation activity of RuBisCO and promote the regeneration of RuBP. As a result, the 14SF transgenic plants showed a higher net photosynthetic rate and biomass yield even under low-CO2environment.These findings demonstrate the possibility of cultivating crops with high photosynthetic efficiency by manipulating genes involved in the photosynthetic carbon assimilation metabolic pathway.

11.
Hortic Res ; 9: uhac076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38239769

RESUMO

Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.

12.
Front Plant Sci ; 12: 739091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630492

RESUMO

Chayote (Sechium edule), a member of the Cucurbitaceae family, is cultivated throughout tropical and subtropical regions of the world and utilized in pharmaceutical, cosmetic and food industries because it is an excellent source of minerals, dietary fibers, protein, vitamins, carotenoids, polysaccharides, phenolic and flavonoid compounds, and other nutrients. Chayote extracts process various medicinal properties, such as anti-cardiovascular, antidiabetic, antiobesity, antiulcer, and anticancer properties. With the rapid advancements of molecular biology and sequencing technology, studies on chayote have been carried out. Research advances, including molecular makers, breeding, genomic research, chemical composition, and pests and diseases, regarding chayote are reviewed in this paper. Future exploration and application trends are briefly described. This review provides a reference for basic and applied research on chayote, an important Cucurbitaceae vegetable crop.

13.
Mol Biotechnol ; 63(7): 638-649, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33973142

RESUMO

Carotenoids are the general term of natural pigments. The formation of plant color is probably related to the components of carotenoids. As the yellow variety of celery, it is rich in the composition and content of carotenoids. However, the transcript profiling and roles of the genes related to carotenoids biosynthesis in yellow celery remain unclear. In this study, three yellow celery cultivars at different growth stages were used to analyze the content and composition of carotenoids and transcriptional changes of carotenoid biosynthesis-related genes. The lutein and ß-carotene were detected in yellow celery cultivar, while α-carotene and lycopene were not detected. The contents of lutein and ß-carotene were higher in leaf blades than in petioles. During the growth and development, the contents of lutein and ß-carotene gradually decreased in celery. Compared with the other two cultivars, the contents of lutein and ß-carotene were the highest in 'Huangtaiji' of 65 days after sowing (DAS) and 85 DAS and 'Liuhehuangxinqin' of 105 DAS, respectively. The expression levels of AgLCYB and AgPSY2 genes were significantly correlated with lutein and ß-carotene contents. This work provided a reference for the further study on carotenoid metabolisms in yellow celery and also made sense on the way of cultivating yellow celery with high carotenoids content.


Assuntos
Apium/crescimento & desenvolvimento , Carotenoides/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Apium/química , Apium/genética , Regulação da Expressão Gênica de Plantas , Luteína/metabolismo , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , beta Caroteno/metabolismo
14.
Protoplasma ; 258(2): 379-390, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111186

RESUMO

Carotenoids are liposoluble pigments found in plant chromoplasts that are responsible for the yellow, orange, and red colors of carrot taproots. Drought is one of the main stress factors affecting carrot growth. Carotenoids play important roles in drought resistance in higher plants. In the present work, the carotenoid contents in three different-colored carrot cultivars, 'Kurodagosun' (orange), 'Benhongjinshi' (red), and 'Qitouhuang' (yellow), were determined by ultra-high-performance liquid chromatography (UPLC) after 15% polyethylene glycol (PEG) 6000 treatment. Real-time fluorescence quantitative PCR (RT-qPCR) was then used to determine the expression levels of carotenoid synthesis- and degradation-related genes. Increases in ß-carotene content in 'Qitouhuang' taproots under drought stress were found to be related to the expression levels of DcPSY2 and DcLCYB. Increases in lutein and decreases in α-carotene content in 'Qitouhuang' and 'Kurodagosun' under PEG treatment may be related to the expression levels of DcCYP97A3, DcCHXE, and DcCHXB1. The expression levels of DcNCED1 and DcNCED2 in the three cultivars significantly increased, thus suggesting that NCED genes could respond to drought stress. Analysis of the growth status and carotenoid contents of carrots under PEG treatment indicated that the orange cultivar 'Kurodagosun' has better adaptability to drought stress than the other cultivars and that ß-carotene and lutein may be involved in the stress resistance process of carrot.


Assuntos
Carotenoides/química , Daucus carota/química , Proteínas de Plantas/química , Secas
15.
Protoplasma ; 257(3): 853-861, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31863170

RESUMO

Fruit shape and ripening are major horticultural traits for many fruits and vegetable crops. Changes in fruit shape and ripening are often accomplished by altered cell division or cell expansion patterns. Gibberellic acids (GAs) are essential for tomato fruit development; however, the exact role and the underlying mechanism are still elusive. To elucidate the relationship between gibberellins and fruit shape and ripening in tomato, GA3 and gibberellin biosynthesis inhibitor paclobutrazol (PAC) were applied to tomato. Fruit shape index was increased when GA3 was applied, which was mainly attributed to the increased organ elongation. The expression levels of genes involved in cell elongation and expansion were altered at the same time. In addition, GA delayed the ripening time by regulating the transcript levels of ethylene-related genes. By contrast, PAC application decreased fruit shape index and shortened fruit ripening time. These results demonstrate that manipulation of GA levels can simultaneously influence tomato fruit shape and ripening. Further studies aimed to regulate fruit shape and ripening can be achieved by altering GA levels.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/efeitos adversos , Desenvolvimento Vegetal/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Triazóis/efeitos adversos , Solanum lycopersicum/crescimento & desenvolvimento
16.
Plant Physiol Biochem ; 157: 339-347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33186851

RESUMO

Celery (Apium graveolens L.) is a leafy vegetable of Apiaceae, which is greatly popular because of its rich nutrients. Lutein and ß-carotene are two important carotenoids. Lycopene epsilon cyclase (LCY-ε) is a key branch point enzyme in the carotenoid biosynthetic pathway. In this study, we cloned the AgLCY-ε gene from celery and overexpressed it in Arabidopsis. The results showed that both lutein and ß-carotene accumulation increased significantly in transgenic Arabidopsis hosting AgLCY-ε gene, compared with wild type (WT) plants. The transcription levels of AtPSY and AtCRTISO genes involved in carotenoids biosynthesis also increased in transgenic lines. One-month-old transgenic Arabidopsis seedlings were treated with 200 mM NaCl. The malondialdehyde (MDA) content in transgenic Arabidopsis plants after salt treatment was significantly lower, and the activities of the two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD), were significantly increased than that of WT plants. Overexpression of AgLCY-ε gene showed increased lutein and ß-carotene accumulations, and enhanced salt tolerance in transgenic plants.


Assuntos
Apium/genética , Arabidopsis/fisiologia , Liases Intramoleculares/genética , Luteína/análise , Tolerância ao Sal/genética , beta Caroteno/análise , Arabidopsis/genética , Plantas Geneticamente Modificadas/fisiologia , Verduras
17.
Hortic Res ; 6: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231527

RESUMO

Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.

19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(3): 446-454, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28335670

RESUMO

The male-sterile carrot is an effective material for carrot breeding. The atp6 gene is involved in carrot fertility. However, the differences in lengths, copies, and expression profiles of the atp6 gene in fertile and male-sterile lines of carrot are unclear. In this study, one copy atp6 gene was found in the mtDNAs of 'Kuroda' (fertility, 954 bp) and 'Wuye-BY' (male sterility, 819 bp) carrot lines, while two copies atp6 genes (Wuye-L and Wuye-D, 954 bp and 819 bp, respectively) were found in the mtDNA of 'Wuye' (fertility). Two putative conserved domains have been detected in the carrot atp6 protein. Evolutionary analysis showed that the atp6 protein sequences of Wuye-L and Kuroda were clustered in the same branch, while Wuye-D and Wuye-BY were clustered in the same branch. The atp6 gene was higher expressed in the flowers of 'Kuroda' and 'Wuye' (Wuye-L), while lower expressed in 'Wuye-BY' and 'Wuye' (Wuye-D).


Assuntos
Daucus carota/fisiologia , Dosagem de Genes , Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/genética , Daucus carota/classificação , Daucus carota/genética , Fertilidade , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Análise de Sequência de DNA
20.
Plant Sci ; 263: 31-38, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818381

RESUMO

Apigenin and anthocyanin biosyntheses share common precursors in plants. Flavone synthase (FNS) converts naringenin into apigenin in higher plants. Celery is an important edible and medical vegetable crop that contains apigenin in its tissues. However, the effect of high AgFNS gene expression on the apigenin and anthocyanins contents of purple celery remains to be elucidated. In this study, the AgFNS gene was cloned from purple celery ('Nanxuan liuhe purple celery') and overexpressed in this purple celery to determine its influence on anthocyanins and apigenin contents. Results showed that the AgFNS gene was 1068bp, which encodes 355 amino acid residues. Evolution analysis showed that the AgFNS protein belongs to the FSN I type. In AgFNS transgenic celery, the anthocyanins content in petioles was lower than that wild-type celery plants. Apigenin content increased in the petioles of AgFNS transgenic celery. The transcript levels of the AgPAL, AgC4H, AgCHS, and AgCHI genes were up-regulated, whereas those of the AgF3H, AgF3'H, AgDFR, AgANS, and Ag3GT genes were down-regulated in the petioles of AgFNS transgenic plants compared with wild-type celery plants. This work provides basic knowledge about the function of the AgFNS gene in the anthocyanin and apigenin biosyntheses of celery.


Assuntos
Antocianinas/biossíntese , Apigenina/biossíntese , Apium/genética , Sequência de Aminoácidos , Apium/metabolismo , Flavanonas/metabolismo , Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA