Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(11): 3054-3071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946870

RESUMO

Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.


Assuntos
Ecossistema , Plâncton , Animais , Zooplâncton/fisiologia , Biodiversidade , Biomassa , Fitoplâncton/fisiologia , Cadeia Alimentar
2.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20180543, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31203759

RESUMO

Metabolic rates are fundamental to many biological processes, and commonly scale with body size with an exponent ( bR) between 2/3 and 1 for reasons still debated. According to the 'metabolic-level boundaries hypothesis', bR depends on the metabolic level ( LR). We test this prediction and show that across cephalopod species intraspecific bR correlates positively with not only LR but also the scaling of body surface area with body mass. Cephalopod species with high LR maintain near constant mass-specific metabolic rates, growth and probably inner-mantle surface area for exchange of respiratory gases or wastes throughout their lives. By contrast, teleost fish show a negative correlation between bR and LR. We hypothesize that this striking taxonomic difference arises because both resource supply and demand scale differently in fish and cephalopods, as a result of contrasting mortality and energetic pressures, likely related to different locomotion costs and predation pressure. Cephalopods with high LR exhibit relatively steep scaling of growth, locomotion, and resource-exchange surface area, made possible by body-shape shifting. We suggest that differences in lifestyle, growth and body shape with changing water depth may be useful for predicting contrasting metabolic scaling for coexisting animals of similar sizes. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Assuntos
Cefalópodes/metabolismo , Ecossistema , Peixes/metabolismo , Animais , Tamanho Corporal , Peso Corporal , Cefalópodes/química , Cefalópodes/classificação , Cefalópodes/crescimento & desenvolvimento , Mudança Climática , Metabolismo Energético , Peixes/classificação , Peixes/crescimento & desenvolvimento , Cinética , Comportamento Predatório , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA