Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
1.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
2.
Immunology ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798051

RESUMO

Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.

3.
Eur J Immunol ; 53(7): e2250163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137164

RESUMO

The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Dieta , Microbioma Gastrointestinal/fisiologia , Bactérias , Antibacterianos , Vesículas Extracelulares/metabolismo
4.
Eur J Immunol ; 53(11): e2350521, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595951

RESUMO

Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a-/- mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a-/- mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a-/- mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.


Assuntos
Células Epiteliais , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Diferenciação Celular , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Timo
5.
Cancer Immunol Immunother ; 73(5): 88, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554175

RESUMO

BACKGROUND: Prenatal inflammation exposure (PIE) can increase the disease susceptibility in offspring such as lung cancer. Our purpose was to investigate the mechanisms of PIE on lung cancer. METHODS: Prenatal BALB/c mice were exposed to lipopolysaccharide (LPS), and then, their offspring were intraperitoneally instilled with urethane to establish the two-stage lung cancer carcinogenesis model. At the 48 weeks of age, the offspring mice were killed and lung tissues were collected for HE, immunohistochemistry, immunofluorescence, and Luminex MAGPIX®-based assays. CD11b + F4/80 + tumor-associated macrophages (TAMs) were sorted out from lung tumor tissues by cell sorting technique. Flow cytometry was employed to evaluate the extent of M2-like polarization of TAMs and PD-L1 expression. RESULTS: The offspring of PIE mice revealed more lung lesion changes, including atypical hyperplasia and intrapulmonary metastases. The number of lung nodules, lung organ index, and PCNA, MMP-9 and Vimentin positive cells in lung tissue of PIE group were higher than those of Control group. The increases of mRNA encoding M2 macrophage markers and cytokines in offspring of prenatal LPS-treated mice confirmed the induced effect of PIE on macrophage polarization. Additionally, PIE treatment increased the percentage of CD163 + CD206 + cells in the sorted TAMs. Importantly, endoplasmic reticulum (ER) stress-markers like GRP78/BIP and CHOP, p-IRE1α and XBP1s, and PD-L1 were up-regulated in TAMs from PIE group. Besides, we also observed that IRE1α inhibitor (KIRA6) reversed the M2-like TAMs polarization and metastasis induced by PIE. CONCLUSIONS: IRE1α/XBP1-mediated M2-like TAMs polarization releases the pro-tumorigenic cytokines and PD-L1 expression, which may be the regulatory mechanism of accelerating lung cancer in offspring of mice undergoing PIE.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/patologia , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Macrófagos Associados a Tumor/metabolismo , Antígeno B7-H1/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Carcinogênese , Citocinas , Inflamação , Microambiente Tumoral/genética
6.
BMC Med ; 22(1): 106, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454391

RESUMO

BACKGROUND: Breastfeeding (BF) confers metabolic benefits to infants, including reducing risks of metabolic syndrome such as obesity and diabetes later in life. However, the underlying mechanism is not yet fully understood. Hence, we aim to investigate the impacts of BF on the metabolic organs of infants. METHODS: Previous literatures directly studying the influences of BF on offspring's metabolic organs in both animal models and humans were comprehensively reviewed. A microarray dataset of intestinal gene expression comparing infants fed on breastmilk versus formula milk was analyzed. RESULTS: Reanalysis of microarray data showed that BF is associated with enhanced intestinal gluconeogenesis in infants. This resembles observations in other mammalian species showing that BF was also linked to increased gluconeogenesis. CONCLUSIONS: BF is associated with enhanced intestinal gluconeogenesis in infants, which may underpin its metabolic advantages through finetuning metabolic homeostasis. This observation seems to be conserved across species, hinting its biological significance.


Assuntos
Aleitamento Materno , Síndrome Metabólica , Lactente , Feminino , Animais , Humanos , Gluconeogênese , Mamíferos
7.
J Biomed Sci ; 31(1): 24, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395904

RESUMO

BACKGROUND: Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified. METHODS: Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments. We studied the effect of p32-knockdown in the transgenic Drosophila and Hela cells expressing the wild type and the pathogenic variants of hCHCHD2. We further investigated the rescue ability of a custom generated p32-inhibitor in these models as well as in the human fibroblast derived neural precursor cells and the dopaminergic neurons harboring hCHCHD2-Arg145Gln. RESULTS: Our results showed that wildtype and mutant hCHCHD2 could bind to p32 in vitro, supported by in vivo interaction between human CHCHD2 and Drosophila p32. Knockdown of p32 reduced mutant hCHCHD2 levels in Drosophila and in vitro. In Drosophila hCHCHD2 models, inhibition of p32 through genetic knockdown and pharmacological treatment using a customized p32-inhibitor restored dopaminergic neuron numbers and improved mitochondrial morphology. These were correlated with improved locomotor function, reduced oxidative stress and decreased mortality. Consistently, Hela cells expressing mutant hCHCHD2 showed improved mitochondrial morphology and function after treatment with the p32-inhibitor. As compared to the isogenic control cells, large percentage of the mutant neural precursor cells and dopaminergic neurons harboring hCHCHD2-Arg145Gln contained fragmented mitochondria which was accompanied by lower ATP production and cell viability. The NPCs harboring hCHCHD2-Arg145Gln also had a marked increase in α-synuclein expression. The p32-inhibitor was able to ameliorate the mitochondrial fragmentation, restored ATP levels, increased cell viability and reduced α-synuclein level in these cells. CONCLUSIONS: Our study identified p32 as a modulator of CHCHD2, possibly exerting its effects by reducing the toxic mutant hCHCHD2 expression and/or mitigating the downstream effects. Inhibition of the p32 pathway can be a potential therapeutic intervention for CHCHD2-linked PD and diseases involving mitochondrial dysfunction.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Animais , Humanos , Trifosfato de Adenosina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HeLa , Células-Tronco Neurais/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Neuroendocrinology ; 114(4): 386-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38113872

RESUMO

INTRODUCTION: Insulin resistance is widely thought to be a critical feature in type 2 diabetes mellitus (T2DM), and there is significant evidence indicating a higher abundance of insulin receptors in the human cerebellum than cerebrum. However, the specific structural or functional changes in the cerebellum related to T2DM remain unclear, and the association between cerebellar alterations, insulin resistance, cognition, and emotion is yet to be determined. METHODS: We investigated neuropsychological performance, and structural and functional changes in specific cerebellar subregions in 43 T2DM patients with high insulin resistance (T2DM-highIR), 72 T2DM patients with low insulin resistance (T2DM-lowIR), and 50 controls. Furthermore, the correlation and stepwise multiple linear regression analysis were performed. RESULTS: Compared to the controls, T2DM exhibited lower cognitive scores and higher depressive/anxious scores. Furthermore, T2DM-highIR patients showed reduced gray matter volume (GMV) in the right cerebellar lobules VIIb, Crus I/II, and T2DM showed reduced GMV in left lobules I-IV compared to controls. Additionally, functional connectivity decrease was observed between the right lobules I-V and orbital part of the superior frontal gyrus in T2DM-highIR compared to both T2DM-lowIR and controls. Notably, there were negative correlations between the GMV of the lobules VIIb, Crus I/II, and updated homeostatic model assessment of insulin resistance, and positive correlation with executive/visuospatial performance in T2DM patients. CONCLUSIONS: These results suggest that the cerebellar lobules VIIb, Crus I/II, represent vulnerable brain regions in the context of insulin resistance. Overall, this study offers new insights into the neuropathophysiological mechanisms of brain impairment in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistência à Insulina , Humanos , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem
9.
Environ Toxicol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619376

RESUMO

This study offers a detailed exploration of lung adenocarcinoma (LUAD), addressing its heterogeneity and treatment challenges through a multi-faceted analysis that includes gene expression, genetic subtyping, pathway analysis, immune assessment, and drug sensitivity. It identifies 165 genes with significant expression differences and 46 genes associated with survival, revealing insights into oxidative stress and autophagy. LUAD samples were divided into three subtypes using consensus clustering on these 46 genes, with distinct survival outcomes. Gene Set Enrichment Analysis (GSEA) on HALLMARK gene sets indicated pathway variations with survival implications. The immune landscape, analyzed using the CIBERSORT algorithm, showed different immune cell distributions across subtypes, with the first subtype exhibiting a better immune environment and survival prospects. Advanced machine learning techniques developed a risk model from a set of four genes, effectively categorizing patients into high and low-risk groups, validated through external datasets and analyses. This model linked lower risk scores to better clinical stages, with a higher mutation rate and potential immunotherapy benefits observed in the high-risk group. Drug sensitivity assessments highlighted varied treatment responses between risk groups, suggesting avenues for personalized therapy. This comprehensive analysis enhances the understanding of LUAD's molecular and clinical nuances, offering valuable insights for tailored treatment approaches.

10.
BMC Surg ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166900

RESUMO

BACKGROUND: Corpus callosum glioblastoma (ccGBM) is a specific type of GBM and has worse outcomes than other non-ccGBMs. We sought to identify whether en-bloc resection of ccGBMs based on T2-FLAIR imaging contributes to clinical outcomes and can achieve a satisfactory balance between maximal resection and preservation of neurological function. METHODS: A total of 106 adult ccGBM patients (including astrocytoma, WHO grade 4, IDH mutation, and glioblastoma) were obtained from the Department of Neurosurgery in Nanfang Hospital between January 2008 and December 2018. The clinical data, including gender, age, symptoms, location of tumor, involvement of eloquent areas, extent of resection (EOR), pre- and postoperative Karnofsky Performance Status (KPS) scales, and National Institute of Health stroke scale (NIHSS) scores were collected. Propensity score matching (PSM) analysis was applied to control the confounders for analyzing the relationship between the en-bloc technique and EOR, and the change in the postoperative KPS scales and NIHSS scores. RESULTS: Applying the en-bloc technique did not negatively affect the postoperative KPS scales compared to no-en-bloc resection (P = 0.851 for PSM analysis) but had a positive effect on preserving or improving the postoperative NIHSS scores (P = 0.004 for PSM analysis). A positive correlation between EOR and the en-bloc technique was identified (r = 0.483, P < 0.001; r = 0.720, P < 0.001 for PSM analysis), indicating that applying the en-bloc technique could contribute to enlarged maximal resection. Further survival analysis confirmed that applying the en-bloc technique and achieving supramaximal resection could significantly prolong OS and PFS, and multivariate analysis suggested that tumor location, pathology, EOR and the en-bloc technique could be regarded as independent prognostic indicators for OS in patients with ccGBMs, and pathology, EOR and the en-bloc technique were independently correlated with patient's PFS. Interestingly, the en-bloc technique also provided a marked reduction in the risk of tumor recurrence compared with the no-en-bloc technique in tumors undergoing TR, indicating that the essential role of the en-bloc technique in ccGBM surgery (HR: 0.712; 95% CI: 0.535-0.947; P = 0.02). CONCLUSIONS: The en-bloc technique could contribute to achieving an enlarged maximal resection and could significantly prolong overall survival and progression-free survival in patients with ccGBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Corpo Caloso/cirurgia , Corpo Caloso/patologia , Neoplasias Encefálicas/cirurgia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Procedimentos Neurocirúrgicos/métodos
11.
J Allergy Clin Immunol ; 151(2): 361-370, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543697

RESUMO

Gut bacterial metabolites such as short-chain fatty acids (SCFAs) have important effects on immune cells and the gut. SCFAs derive from the fermentation of dietary fiber by gut commensal bacteria. Insufficient fiber intake thus compromises SCFA production and, as a consequence, the host's physiology (particularly immune functions). We propose that many Western diseases, including those associated with impaired mucosal responses such as food allergy and asthma, may be affected by insufficient fiber intake and reduced SCFA levels in the gut and blood. Insufficient fiber intake is 1 alternative, or contributor, on top of the "hygiene hypothesis" to the rise of Western lifestyle diseases, and the 2 ideas need to be reconciled. The mechanisms by which SCFAs influence immunity and gut homeostasis are varied; they include stimulation of G protein-coupled receptors (GPCRs), such as GPR43 or GPR41; inhibition of histone deacetylases (and hence, gene transcription changes); and induction of intracellular metabolic changes. SCFAs modulate at many different levels to alter mucosal homeostasis, including changes to gut epithelial integrity, increases in regulatory T-cell numbers and function, and decreased expression of numerous inflammatory cytokines. There is scope for preventing and/or treating diseases by using diets that alter SCFA levels.


Assuntos
Hipersensibilidade Alimentar , Imunidade nas Mucosas , Humanos , Ácidos Graxos Voláteis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fibras na Dieta
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673843

RESUMO

Neutrophil-myeloperoxidase (MPO) is a heme-containing peroxidase which produces excess amounts of hypochlorous acid during inflammation. While pharmacological MPO inhibition mitigates all indices of experimental colitis, no studies have corroborated the role of MPO using knockout (KO) models. Therefore, we investigated MPO deficient mice in a murine model of colitis. Wild type (Wt) and MPO-deficient mice were treated with dextran sodium sulphate (DSS) in a chronic model of experimental colitis with three acute cycles of DSS-induced colitis over 63 days, emulating IBD relapse and remission cycles. Mice were immunologically profiled at the gut muscoa and the faecal microbiome was assessed via 16S rRNA amplicon sequencing. Contrary to previous pharmacological antagonist studies targeting MPO, MPO-deficient mice showed no protection from experimental colitis during cyclical DSS-challenge. We are the first to report drastic faecal microbiota shifts in MPO-deficient mice, showing a significantly different microbiome profile on Day 1 of treatment, with a similar shift and distinction on Day 29 (half-way point), via qualitative and quantitative descriptions of phylogenetic distances. Herein, we provide the first evidence of substantial microbiome shifts in MPO-deficiency, which may influence disease progression. Our findings have significant implications for the utility of MPO-KO mice in investigating disease models.


Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Knockout , Peroxidase , Animais , Peroxidase/metabolismo , Peroxidase/genética , Camundongos , Colite/microbiologia , Colite/induzido quimicamente , Colite/genética , Fezes/microbiologia , Deleção de Genes , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL
13.
J Environ Manage ; 351: 119693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042069

RESUMO

Preserving rumen fluid as the inoculum for anaerobic digestion of food waste is necessary when access to animal donors or slaughterhouses is limited. This study aims to compare two preservation methods relative to fresh ruminal inoculum: (1) cryoprotected with 5% dimethyl sulfoxide (DMSO) and stored at -20 °C and (2) frozen at -20 °C, both for 6 months. The fermentation activity of different inoculum was evaluated by rumen-based in vitro anaerobic fermentation tests (volatile fatty acids, biomass digestibility, and gas production). Citrus pomace was used as the substrate during a 96-h fermentation. The maximum volatile fatty acids, methane production, and citrus pomace digestibility from fresh rumen fluid were not significantly different from rumen fluid preserved with DMSO. Metagenome analysis revealed a significant difference in the rumen microbial composition and functions between fresh rumen fluid and frozen inoculum without DMSO. Storage of rumen fluid using -20 °C with DMSO demonstrated the less difference compared with fresh rumen fluid in microbial alpha diversity and taxa composition. The hierarchical clustering tree of CAZymes showed that DMSO cryoprotected fluid was clustered much closer to the fresh rumen fluid, showing more similarity in CAZyme profiles than frozen rumen fluid. The abundance of functional genes associated with carbohydrate metabolism and methane metabolism did not differ between fresh rumen fluid and the DMSO-20 °C, whereas the abundance of key functional genes significantly decreased in frozen rumen fluid. These findings suggest that using rumen liquid preserved using DMSO at -20 °C for 180 days is a feasible alternative to fresh rumen fluid. This would reduce the need for laboratories to maintain animal donors and/or reduce the frequency of collecting rumen fluid from slaughterhouses.


Assuntos
Microbiota , Eliminação de Resíduos , Animais , Dimetil Sulfóxido/metabolismo , Biocombustíveis , Alimentos , Rúmen/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Metano , Dieta , Ácidos Graxos/metabolismo , Ração Animal/análise
14.
J Gen Intern Med ; 38(1): 67-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35501626

RESUMO

BACKGROUND: Simulation-based education can equip healthcare providers with the ability to respond to and manage stressors associated with rapidly deteriorating patient situations. However, little is known about the benefits of using virtual reality (VR) for this purpose. OBJECTIVE: To compare between desktop VR and face-to-face simulation in stress responses and performance outcomes of a team-based simulation training in managing clinical deterioration. DESIGN: A randomised controlled study METHOD: The study was conducted on 120 medical and nursing students working in interprofessional teams. The teams were randomly assigned to participate in a 2-h simulation using either the desktop VR or face-to-face simulation with simulated patient (SP). Biophysiological stress response, psychological stress, and confidence levels were measured before and after the simulation. Performance outcomes were evaluated after the simulation using a deteriorating patient scenario. RESULTS: The systolic blood pressure and psychological stress response were significantly increased among participants in VR and SP groups; however, no significant differences were found between the groups. There was also no significant difference in confidence and performance outcomes between participants in the VR and SP groups for both medical and  nursing students. Although the psychological stress response was negatively correlated (r = -0.43; p < 0.01) with confidence levels, there was no association between stress response and performance score. CONCLUSION: Despite being less immersive, the desktop VR was capable of inducing psychological and physiological stress responses by placing emotional, social, and cognitive demands on learners. Additionally, by ensuring close alignment between the simulation tasks and the clinical tasks (i.e. functional fidelity), the desktop VR may provide similar performance outcomes as conventional simulation training. This evidence is timely given the rise in the use of virtual learning platforms to facilitate training during the COVID-19 pandemic where face-to-face training may not be feasible. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov NCT04330924.


Assuntos
COVID-19 , Deterioração Clínica , Treinamento por Simulação , Realidade Virtual , Humanos , Pandemias , COVID-19/terapia , Simulação por Computador , Competência Clínica
15.
BMC Cancer ; 23(1): 1077, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940857

RESUMO

BACKGROUND: The effects of obesity and diabetes on the clinical outcomes of differentiated thyroid cancer (DTC) remain unclear. OBJECTIVES: To explore the association between obesity and diabetes with pathological features and therapeutic response of DTC. METHODS: Patients were categorized based on body mass index (BMI) and glycemic status. Compare the correlation between BMI and glycemic status with pathological features and therapeutic response of DTC. To analyze the independent risk factors for the aggressiveness of DTC. RESULTS: The proportion of patients with bilateral tumors was higher in the overweight, obese and diabetes group (P = 0.001, 0.045). The overweight group demonstrated a higher TNM stage (P = 0.004), while the T and TNM stages were higher in the diabetes group (P = 0.032, 0.000). The probability of distant metastasis increases by 37.4% for each unit of BMI increase (odds ratio (OR) = 1.374, CI 95% 1.061-1.778, P < 0.05). The BMI of Biochemical Incomplete Response (BIR) is significantly higher than that of Excellent Response (ER) (P = 0.015), the fasting plasma glucose (FPG) of Structural Incomplete (SIR) was significantly higher than that of ER and BIR (P = 0.030, 0.014). CONCLUSION: Obesity and diabetes have effect on DTC aggressiveness. BMI and FPG have correlation with the therapeutic response of DTC patients.


Assuntos
Adenocarcinoma , Diabetes Mellitus , Neoplasias da Glândula Tireoide , Humanos , Sobrepeso/complicações , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/patologia , Obesidade/complicações , Fatores de Risco , Diabetes Mellitus/epidemiologia , Adenocarcinoma/complicações
16.
Neuroendocrinology ; 113(7): 736-755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630921

RESUMO

INTRODUCTION: Type 2 diabetes mellitus (T2DM) patients with depression have a higher risk of complications and mortality than T2DM without depression. However, the exact neuropathophysiological mechanism remains unclear. Consequently, the current study aimed to investigate the alteration of cortical and subcortical spontaneous neural activity in T2DM patients with and without depression. METHODS: The demographic data, clinical variables, neuropsychological tests, and functional and anatomical magnetic resonance imaging of depressed T2DM (n = 47) of non-depressed T2DM (n = 59) and healthy controls (n = 41) were collected and evaluated. The correlation analysis, stepwise multiple linear regression, and receiver operating characteristic curve were performed for further analysis. RESULTS: Abnormal neural activities in the bilateral posterior cingulate cortex (PCC) and hippocampus were observed in depressed and non-depressed T2DM and the right putamen of the depressed T2DM. Interestingly, the subcortical degree centrality (DC) of the right hippocampus and putamen were higher in depressed than non-depressed T2DM. Furthermore, the cortical amplitude of low-frequency fluctuation (ALFF) in PCC, subcortical DC in the putamen of depressed T2DM, and hippocampus of non-depressed T2DM was correlated with cognitive scores. In contrast, the cortical fractional ALFF in PCC of non-depressed T2DM was correlated with depression scores. CONCLUSIONS: The abnormalities of spontaneous cortical activity in PCC and subcortical activity in the hippocampus might represent the neurobiological feature of cerebral dysfunction in T2DM. Notably, the altered subcortical activity in the right putamen might mainly associate with negative emotion in T2DM, which could be a promising biomarker for recognizing early cerebral dysfunction in depressed T2DM. This study provided a novel insight into the neuropathophysiological mechanism of brain dysfunction in T2DM with and without depression.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Depressão/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Hipocampo , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia
17.
J Neurooncol ; 164(3): 557-568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37783878

RESUMO

PURPOSE: Resection beyond the contrast-enhanced zone contributed to reduce tumor burden and prolong survival in glioblastomas. The optimal extent of resection (EOR) and how to achieve it are worthy of continuous investigation for obtaining a satisfactory balance between maximal resection and the preservation of neurological function. METHODS: A total of 340 adult supratentorial lobar glioblastomas (included astrocytoma, WHO 4, IDH mutation and glioblastoma) were retrospectively evaluated. The clinical data, EOR, technique of resection, postoperative complications, overall survival (OS) and progression-free survival (PFS) were assessed by univariate, multivariate and propensity score matched analysis. Histological staining was performed to comprehend the effect of the membranous structures and the cell distribution in tumoral and peritumoral regions. RESULTS: Supramaximal resection (SMR) was confirmed as resection with 100% EORCE and > 50% EORnCE in glioblastomas by Cox proportional hazards model. Histological results showed SMR reduced the cell density of surgical edge compared to total resection. En-bloc technique based on membranous structures, which had blocking effect on tumoral invasion, contributed to achieve SMR. Moreover, applying en-bloc technique and achieving SMR did not additionally deteriorate neurological function and had similarly effects on the improvement of neurological function. Multivariate analysis confirmed that IDH1 status, technique of resection and EOR were independently correlated with PFS, and > 64 years old, IDH1 status, technique of resection, EOR and preoperative NIHSS were independently correlated with OS. CONCLUSIONS: Applying en-bloc technique and achieving SMR, which could reduce tumor burden and did not increase additional complications, both had remarkedly positive effects on clinical outcomes in patients with primary supratentorial lobar glioblastomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Neoplasias Supratentoriais , Adulto , Humanos , Pessoa de Meia-Idade , Glioblastoma/patologia , Estudos Retrospectivos , Carga Tumoral , Neoplasias Supratentoriais/genética , Astrocitoma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Resultado do Tratamento
18.
J Org Chem ; 88(16): 11945-11953, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37560821

RESUMO

A novel protocol of gold-catalyzed N-aryl propargylamines to construct tetrahydroquinolines and 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolines in moderate to good yields has been developed through the tandem reactions of intramolecular hydroarylation and transfer hydrogenation. The strategy has the advantages of easy access to raw materials, simple reaction conditions, good substrate compatibility, high efficiency, and excellent regioselectivity.

19.
Org Biomol Chem ; 21(42): 8548-8553, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846461

RESUMO

We present a macrocyclic fluorescent probe for the detection of citrate. This receptor binds citrate through hydrogen-bonding interactions in aqueous solutions, and exhibits a turn-on in fluorescence in response to binding. The presence of common biologically relevant dicarboxylate species does not significantly impact the fluorescence response. We have demonstrated the utility of this probe with the staining of murine splenocytes, and identified different basal levels of citrate present in immune cell subsets via flow cytometry analysis.


Assuntos
Ácido Cítrico , Corantes Fluorescentes , Animais , Camundongos , Ácido Cítrico/análise , Fluorescência
20.
BMC Med Imaging ; 23(1): 84, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328753

RESUMO

BACKGROUND: This study aimed to develop and validate an AI (artificial intelligence)-aid method in myocardial perfusion imaging (MPI) to differentiate ischemia in coronary artery disease. METHODS: We retrospectively selected 599 patients who had received gated-MPI protocol. Images were acquired using hybrid SPECT-CT systems. A training set was used to train and develop the neural network and a validation set was used to test the predictive ability of the neural network. We used a learning technique named "YOLO" to carry out the training process. We compared the predictive accuracy of AI with that of physician interpreters (beginner, inexperienced, and experienced interpreters). RESULTS: Training performance showed that the accuracy ranged from 66.20% to 94.64%, the recall rate ranged from 76.96% to 98.76%, and the average precision ranged from 80.17% to 98.15%. In the ROC analysis of the validation set, the sensitivity range was 88.9 ~ 93.8%, the specificity range was 93.0 ~ 97.6%, and the AUC range was 94.1 ~ 96.1%. In the comparison between AI and different interpreters, AI outperformed the other interpreters (most P-value < 0.05). CONCLUSION: The AI system of our study showed excellent predictive accuracy in the diagnosis of MPI protocols, and therefore might be potentially helpful to aid radiologists in clinical practice and develop more sophisticated models.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Estudos Retrospectivos , Imagem de Perfusão do Miocárdio/métodos , Inteligência Artificial , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA