Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750074

RESUMO

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(11): 1226-1232, 2020 Nov.
Artigo em Zh | MEDLINE | ID: mdl-33172560

RESUMO

OBJECTIVE: To investigate the role of microglial pyroptosis in hypoxic-ischemic brain damage. METHODS: An oxygen-glucose deprivation/reoxygenation (OGD/R) model of rat microglial cells were cultured in vitro. Western blot was used to measure the expression of the pyroptosis-related proteins caspase-1, interleukin-1ß (IL-1ß), and N-terminal gasdermin D (GSDMD-N) at 0, 1, 3, 6, 12, and 24 hours after OGD/R. After the microglial cells were transfected with lentivirus-mediated silenced gasdermin D (GSDMD), immunofluorescence assay and Western blot were used to measure the transfection rate of GSDMD. Microglial cell lines were divided into three groups: normal control, negative control, and LV-sh_GSDMD (lentivirus-mediated GSDMD silencing). CCK-8 assay and LDH kit were used to observe the effect of GSDMD silencing on the viability and toxicity of microglial cells at 24 hours after OGD/R. Western blot was used to observe the effect of GSDMD silencing on the levels of caspase-1, GSDMD-N, and IL-1ß in the microglial cells at 24 hours after OGD/R. RESULTS: The expression levels of the pyroptosis-related proteins caspase-1, GSDMD-N, and IL-1ß in microglial cells were upregulated since 0 hour after OGD/R and reached the peak levels at 24 hours. A microglial cell model of lentivirus-mediated GSDMD silencing was successfully constructed. At 24 hours after OGD/R, compared with the normal control group, the GSDMD silencing group had a significant increase in the cell viability and a significant reduction in the cytotoxicity (P<0.05), as well as significant reductions in the protein expression levels of caspase-1, GSDMD-N, and IL-1ß in microglial cells (P<0.05). CONCLUSIONS: Lentivirus silencing of the key substrate protein for pyroptosis GSDMD can alleviate hypoxic-ischemic brain damage, suggesting that microglial pyroptosis aggravates hypoxic-ischemic brain damage.


Assuntos
Microglia , Piroptose , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Microglia/metabolismo , Ratos
3.
Neural Regen Res ; 16(6): 1037-1043, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269748

RESUMO

Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator (TIGAR) can protect neurons after cerebral ischemia/reperfusion. However, the role of TIGAR in neonatal hypoxic-ischemic brain damage (HIBD) remains unknown. In the present study, 7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia. At 6 days before induction of HIBD, a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D (LV-sh_TIGAR or LV-sh_GSDMD) was injected into the left lateral ventricle and striatum. Highly aggressively proliferating immortalized (HAPI) microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation. Three days before in vitro HIBD induction, HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD. Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Lentivirus-mediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro. Application of exogenous nicotinamide adenine dinucleotide phosphate (NADPH) increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Additionally, exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro. These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD. The study was approved by the Animal Ethics Committee of Soochow University of China (approval No. 2017LW003) in 2017.

4.
J Agric Food Chem ; 67(47): 13033-13039, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31730339

RESUMO

Three new macrocyclic trichothecenes possessing rare 6'-ketal moieties, roridoxins A-C (1-3), and five known compounds (4-8) were isolated from the insect-associated fungus Myrothecium roridum. Their structures were confirmed by a combination of NMR and HRESIMS data, while their absolute configurations were unambiguously determined by single-crystal X-ray analysis and electronic circular dichroism experiments. Trichothecenes 1 and 3 showed potent antifungal activities against four strains of phytopathogenic fungi. In addition, 1, 3, 5, and 6 were found to significantly inhibit the cell growth of Candida albicans with minimal inhibitory concentration values from 8.8 to 18.5 µg/mL. Moreover, they were able to inhibit the biofilm formation of C. albicans better than the positive control.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Hypocreales/química , Insetos/microbiologia , Tricotecenos/química , Tricotecenos/farmacologia , Animais , Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Hypocreales/isolamento & purificação , Hypocreales/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tricotecenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA