Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750074

RESUMO

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.

2.
J Pineal Res ; 75(1): e12885, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183291

RESUMO

Hypoxia-ischemia (HI) of the brain not only impairs neurodevelopment but also causes pineal gland dysfunction, which leads to circadian rhythm disruption. However, the underlying mechanism of circadian rhythm disruption associated with HI-induced pineal dysfunction remains unknown. The zinc finger protein repressor protein with a predicted molecular mass of 58 kDa (RP58) is involved in the development and differentiation of nerve cells. In this study, we established an HI model in neonatal rats to investigate the expression of RP58 and its role in pineal dysfunction and circadian rhythm disruption induced by HI. We demonstrated that RP58 was highly expressed in the pineal gland under normal conditions and significantly downregulated in the pineal gland and primary pinealocytes following HI. Knockdown of RP58 decreased the expression of enzymes in the melatonin (Mel) synthesis pathway (tryptophan hydroxylase 1 [TPH1], acetylserotonin O-methyltransferase [ASMT], and arylalkylamine N-acetyltransferase [AANAT]) and clock genes (circadian locomotor output cycles kaput [CLOCK] and brain and muscle ARNT-like 1 [BMAL1]), and it also reduced the production of Mel, caused pineal cell injury, and disrupted circadian rhythms in vivo and in vitro. Similarly, HI reduced the expression of Mel synthesis enzymes (TPH1, ASMT, and AANAT) and clock genes (CLOCK and BMAL1), and caused pineal injury and circadian rhythm disruption, which were exacerbated by RP58 knockdown. The detrimental effect of RP58 knockdown on pineal dysfunction and circadian rhythm disruption was reversed by the addition of exogenous Mel. Furthermore, exogenous Mel reversed HI-induced pineal dysfunction and circadian rhythm disruption, as reflected by improvements in Mel production, voluntary activity periods, and activity frequency, as well as a diminished decrease in the expression of Mel synthesis enzymes and clock genes. The present study suggests that RP58 is an endogenous source of protection against pineal dysfunction and circadian rhythm disruption after neonatal HI.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , Melatonina/metabolismo , Animais Recém-Nascidos , Fatores de Transcrição ARNTL/metabolismo , RNA Mensageiro/metabolismo , Ritmo Circadiano/fisiologia , Glândula Pineal/metabolismo , Hipóxia/metabolismo , Isquemia/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo
3.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364013

RESUMO

Monoterpene pyridine alkaloids (MTPAs) are alkaloids derived from iridoid glycosides (IGs). The common molecular structure of MTPAs is the pyridine ring, while some of them have a cyclopenta[c]pyridine skeleton. Some compounds containing this structure are potentially bioactive medicinal agents. In this paper, seven drug candidates (A-G), ninety natural source products (1-90), thirty-seven synthesized compounds (91-127), as well as twenty-six key intermediates (S1-S26) were summarized. We categorized five types of MTPAs and one type of cyclopenta[c]pyridine alkaloids in all. Additionally, their possible genetic pathways were proposed. Then, the chemical transformation, biotransformation, chemical synthesis, as well as the bioactivity of MTPAs and cyclopenta[c]pyridine derivatives were analyzed and summarized. Cyclopenta[c]pyridine derivatives can be concisely and chirally synthesized, and they have shown potentials with antibacterial, insecticidal, antiviral, anti-inflammatory, and neuropharmacological activities.


Assuntos
Alcaloides , Produtos Biológicos , Monoterpenos , Alcaloides/farmacologia , Alcaloides/química , Estrutura Molecular , Piridinas/farmacologia , Piridinas/química , Produtos Biológicos/química
4.
Cancer Cell Int ; 21(1): 683, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923957

RESUMO

BACKGROUND: Multiple myeloma (MM) is the most common malignant hematological disease in the people worldwide. Glaucocalyxin A (GLA) is a bioactive ent-kauranoid diterpenoid, that is derived from Rabdosia japonica var. GLA has been demonstrated that it had various pharmacological activities, such as anti-coagulation, anti-bacterial, anti-tumor, anti-inflammation, antioxidant activities. Although GLA has effective anti-tumor properties, its effects on multiple myeloma remain unclear. The aim of this study was to examine the possible anti-cancer effects of GLA and their molecular mechanisms on MM cells in vitro and in vivo. METHODS: To evaluate the role of GLA on the proliferation of MM cells in vitro and in vivo, we used MTT method to detect the role of GLA on the proliferation of MM cells. Cell apoptosis and cell cycle assay were evaluated by flow cytometry. Protein expressions in GLA-treated and untreated MM cells were evaluated by western blot analyses. MM xenograft nude mice model was used to investigate the role of GLA on the proliferation of MM cells in vivo. IHC assay was used to examine the role of GLA on the MM xenograft model in vivo. RESULTS: In the present study, we firstly reported the potent anti-myeloma activity of GLA on MM cells. We found that GLA could induce apoptosis in vitro and in vivo. GLA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and downregulate interleukin IL-6 induced STAT3 phosphorylation in MM. Overexpression of STAT3 could significantly prevent apoptosis induced by GLA; while knockdown of STAT3 enhanced it. Moreover, GLA could inhibit cell proliferation by inducing the cell cycle arrest. GLA reduced the expression of cell cycle-related proteins CCNB1, CCND1, CCND2, and CCND3 and increased the expression of p21 in MM cell lines. In addition, in the MM xenograft nude mice model, GLA exhibited very good anti-myeloma activity. Administration of GLA almost completely inhibited tumor growth within 19 days without physical toxicity. And the IHC results showed GLA significantly inhibited cell proliferation and interfered STAT3 pathway on MM xenograft model tumor tissues. CONCLUSIONS: Taken together, our present research indicated that GLA inhibits the MM cell proliferation, induces MM cell apoptosis and cell cycle arrest through blocking the activation of STAT3 pathway. Thus, GLA may be a potential therapeutic candidate for MM patients in the future.

5.
BMC Cardiovasc Disord ; 21(1): 403, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418957

RESUMO

BACKGROUND: Cardiomyocyte metabolism changes before cardiac remodeling, but its role in early cardiac hypertrophy detection remains unclear. This study investigated early changes in plasma metabolomics in a pressure-overload cardiac hypertrophy model induced by transverse aortic constriction (TAC). METHODS: The TAC model was constructed by partly ligating the aortic arch. Twelve Sprague-Dawley rats were randomly divided into the TAC group (n = 6) and sham group (n = 6). Three weeks after surgery, cardiac echocardiography was performed to assess cardiac remodeling and function. Hematoxylin/eosin (HE), Masson, and wheat germ agglutinin (WGA) stains were used to observe pathological changes. Plasma metabolites were detected by UPLC-QTOFMS and Q-TOFMS. Specific metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolic pathways were characterized by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the predictive value of the screened metabolites was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS: Three weeks after surgery, the TAC and sham groups had similar left heart function and interventricular septum and diastolic left ventricular posterior wall thicknesses. However, on pathological examination, the cross-sectional area of cardiomyocytes and myocardial fibrosis severity were significantly elevated in TAC rats. OPLS-DA showed different metabolic patterns between the TAC and sham groups. Based on the criteria VIP > 1 and P < 0.05, 13 metabolites were screened out. KEGG analysis identified disrupted lysine degradation through the related metabolites 5-aminopentanoic acid, N6-acetyl-L-lysine, and L-lysine, with areas under the ROC curve (AUCs) of 0.917, 0.889, and 0.806, respectively, for predicting compensated cardiomyocyte hypertrophy. CONCLUSION: Disruption of lysine degradation might be involved in early cardiac hypertrophy development, and related metabolites might be potential predictive and interventional targets for subclinical cardiomyocyte hypertrophy.


Assuntos
Metabolismo Energético , Hipertrofia Ventricular Esquerda/metabolismo , Lisina/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Pressão Arterial , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Metaboloma , Metabolômica , Miocárdio/patologia , Proteólise , Ratos Sprague-Dawley , Fatores de Tempo
6.
Biochem Biophys Res Commun ; 528(1): 1-6, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448507

RESUMO

A common, yet often neglectable, feature of neonatal hypoxic-ischemic brain damage (HIBD) is circadian rhythm disorders resulted from pineal gland dysfunction. Our previous work demonstrated that miRNAs play an important role in regulating key circadian genes in the pineal gland post HIBD [5,21]. In current study, we sought out to extend our investigation by profiling expression changes of pineal long non-coding RNAs (lncRNAs) upon neonatal HIBD using RNA-Seq. After validating lncRNA changes, we showed that one lncRNA: TCONS_00044595 is highly enriched in the pineal gland and exhibits a circadian expression pattern. Next, we performed bioinformatic analysis to predict the lncRNA-miRNA regulatory network and identified 168 miRNAs that potentially targetlncRNA TCONS_00044595. We further validated the bona fide interaction between one candidate miRNA: miR-182, a known factor to regulate pineal Clock expression, and lncRNA TCONS_00044595. Finally, we showed that suppression of lncRNA TCONS_00044595 alleviated the CLOCK activation both in the cultured pinealocytes under OGD conditions and in the pineal gland post HIBD in vivo. Our study thus shed light into novel mechanisms of pathophysiology of pineal dysfunction post neonatal HIBD.


Assuntos
Proteínas CLOCK/genética , Regulação da Expressão Gênica , Hipóxia-Isquemia Encefálica/genética , Glândula Pineal/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Hipóxia-Isquemia Encefálica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Ratos
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(11): 1226-1232, 2020 Nov.
Artigo em Zh | MEDLINE | ID: mdl-33172560

RESUMO

OBJECTIVE: To investigate the role of microglial pyroptosis in hypoxic-ischemic brain damage. METHODS: An oxygen-glucose deprivation/reoxygenation (OGD/R) model of rat microglial cells were cultured in vitro. Western blot was used to measure the expression of the pyroptosis-related proteins caspase-1, interleukin-1ß (IL-1ß), and N-terminal gasdermin D (GSDMD-N) at 0, 1, 3, 6, 12, and 24 hours after OGD/R. After the microglial cells were transfected with lentivirus-mediated silenced gasdermin D (GSDMD), immunofluorescence assay and Western blot were used to measure the transfection rate of GSDMD. Microglial cell lines were divided into three groups: normal control, negative control, and LV-sh_GSDMD (lentivirus-mediated GSDMD silencing). CCK-8 assay and LDH kit were used to observe the effect of GSDMD silencing on the viability and toxicity of microglial cells at 24 hours after OGD/R. Western blot was used to observe the effect of GSDMD silencing on the levels of caspase-1, GSDMD-N, and IL-1ß in the microglial cells at 24 hours after OGD/R. RESULTS: The expression levels of the pyroptosis-related proteins caspase-1, GSDMD-N, and IL-1ß in microglial cells were upregulated since 0 hour after OGD/R and reached the peak levels at 24 hours. A microglial cell model of lentivirus-mediated GSDMD silencing was successfully constructed. At 24 hours after OGD/R, compared with the normal control group, the GSDMD silencing group had a significant increase in the cell viability and a significant reduction in the cytotoxicity (P<0.05), as well as significant reductions in the protein expression levels of caspase-1, GSDMD-N, and IL-1ß in microglial cells (P<0.05). CONCLUSIONS: Lentivirus silencing of the key substrate protein for pyroptosis GSDMD can alleviate hypoxic-ischemic brain damage, suggesting that microglial pyroptosis aggravates hypoxic-ischemic brain damage.


Assuntos
Microglia , Piroptose , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Microglia/metabolismo , Ratos
8.
Can J Microbiol ; 64(3): 167-181, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29227747

RESUMO

Salinized land in the China's Xinjiang Region is being reclaimed for continuous cotton production. The specific objectives of this field study were (i) to compare bacterial composition and diversity in unfarmed (i.e., unreclaimed) and continuously (5, 10, 15, and 20 years) cropped soils and (ii) to explore correlations between soil properties and the bacterial communities identified by Illumina MiSeq sequencing. The results showed that bacterial species richness and diversity increased for 10-15 years and then declined when salinized land was reclaimed for cotton production. Proteobacteria and Firmicutes were the dominant phyla in unfarmed soil. Continuous cropping reduced the abundance of Firmicutes but increased that of Chloroflexi, Acidobacteria, and Actinobacteria. Cluster analyses showed that the greatest similarities in bacterial communities were between the 5- and 10-year treatments and between the 15- and 20-year treatments. Soil pH, electrical conductivity, alkali-hydrolyzable N, and available P were significantly correlated with bacterial community distribution. Overall, cotton production improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unfarmed soil. These positive effects began to decrease after 10-15 years of continuous cotton production.


Assuntos
Bactérias/genética , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Biodiversidade , China , Produtos Agrícolas/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Tipagem Molecular , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Tolerância ao Sal , Análise de Sequência de RNA , Solo/química
9.
Bioorg Chem ; 56: 67-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123542

RESUMO

A cobalt porphyrin (CY-B) was presented, and its interaction with tobacco-specific nitrosamines (TSNAs) was investigated by UV-Vis spectroscopy and high-resolution mass spectrometry. The results revealed that the stoichiometry of the host-guest interaction was 1:2 and that the binding constant between CY-B and TSNAs was within the range of 0.78×10(8)-7.83×10(8)M(-2). The coordination strength between CY-B and TSNAs decreased in the sequence of NNN>NAB>NAT>NNK based on the binding constant. The interaction mechanism of CY-B with TSNAs involved a coordination interaction, and the π-π interaction between the porphyrin macrocycle and the aromatic frame of the TSNAs pyridines may also have been a driving force. The measured thermodynamic properties demonstrated that the reaction of CY-B with TSNAs was spontaneous and that the driving force for the interaction was a change in enthalpy. The reaction was exothermic, and an increasing temperature inhibited the interaction. The IR spectrum of the complex revealed that the NNO group of TSNAs and the metal cobalt of CY-B formed the six-coordinate complex.


Assuntos
Cobalto/química , Metaloporfirinas/química , Neoplasias/química , Nicotiana/química , Nitrosaminas/química , Estrutura Molecular , Termodinâmica
10.
Biomarkers ; 17(5): 435-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22512273

RESUMO

Numerous efforts have been made to indentify reliable and predictive biomarkers to detect the early signs of smoking-induced lung disease. Using 6-month cigarette smoking in mice, we have established smoking-related interstitial fibrosis (SRIF). Microarray analyses and cytokine/chemokine biomarker measurements were made to select circulating microRNAs (miRNAs) biomarkers. We have demonstrated that specific miRNAs species (miR-125b-5p, miR-128, miR-30e, and miR-20b) were significantly changed, both in the lung tissue and in plasma, and exhibited mainstream (MS) exposure duration-dependent pathological changes in the lung. These findings suggested a potential use of specific circulating miRNAs as sensitive and informative biomarkers for smoking-induced lung disease.


Assuntos
Biomarcadores/sangue , Doenças Pulmonares Intersticiais/sangue , MicroRNAs/sangue , Fibrose Pulmonar/sangue , Animais , Quimiocinas/sangue , Análise por Conglomerados , Citocinas/sangue , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/genética , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
11.
Neural Regen Res ; 16(6): 1037-1043, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269748

RESUMO

Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator (TIGAR) can protect neurons after cerebral ischemia/reperfusion. However, the role of TIGAR in neonatal hypoxic-ischemic brain damage (HIBD) remains unknown. In the present study, 7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia. At 6 days before induction of HIBD, a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D (LV-sh_TIGAR or LV-sh_GSDMD) was injected into the left lateral ventricle and striatum. Highly aggressively proliferating immortalized (HAPI) microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation. Three days before in vitro HIBD induction, HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD. Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Lentivirus-mediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro. Application of exogenous nicotinamide adenine dinucleotide phosphate (NADPH) increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Additionally, exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro. These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD. The study was approved by the Animal Ethics Committee of Soochow University of China (approval No. 2017LW003) in 2017.

12.
Carbohydr Polym ; 204: 247-254, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366538

RESUMO

Hydrogen bonding and mechanical refining are closely correlated. In this work, structural variations of hydrogen bonding patterns in cellulose during mechanical pulp refining, including the hydrogen bonding energy and distance as well as the content of hydrogen bonds, have been explored by using the second derivative FTIR spectra and deconvolving spectra in the OH stretching vibrational region. Results show that except for the bond distance, both the hydrogen bonding energy and the content of hydrogen bonds exhibit a significant variation at an increasing beating degree. The calculated hydrogen bonding energies for intermolecular O6H⋯O3' decrease by 12.9%, while those of intramolecular O3H⋯O5 and O2H⋯O6 vary little. Evolutions of the content of certain hydrogen bonds differ depending on the different refining stage. It is suggested that along with the role of water, hydration and swelling, internal/external fibrillation and delamination are strongly related to the structural variations of hydrogen bonding patterns in cellulose during mechanical pulp refining.

13.
J Agric Food Chem ; 67(47): 13033-13039, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31730339

RESUMO

Three new macrocyclic trichothecenes possessing rare 6'-ketal moieties, roridoxins A-C (1-3), and five known compounds (4-8) were isolated from the insect-associated fungus Myrothecium roridum. Their structures were confirmed by a combination of NMR and HRESIMS data, while their absolute configurations were unambiguously determined by single-crystal X-ray analysis and electronic circular dichroism experiments. Trichothecenes 1 and 3 showed potent antifungal activities against four strains of phytopathogenic fungi. In addition, 1, 3, 5, and 6 were found to significantly inhibit the cell growth of Candida albicans with minimal inhibitory concentration values from 8.8 to 18.5 µg/mL. Moreover, they were able to inhibit the biofilm formation of C. albicans better than the positive control.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Hypocreales/química , Insetos/microbiologia , Tricotecenos/química , Tricotecenos/farmacologia , Animais , Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Hypocreales/isolamento & purificação , Hypocreales/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tricotecenos/metabolismo
14.
Talanta ; 150: 388-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838422

RESUMO

In this paper, a novel dummy template molecularly imprinted polymer (DMIP) based on a vinyl-SiO2 microspheres surface for the simultaneous selective recognition and enrichment of 18 amino acids was prepared via a surface molecular imprinting technique using theanine as a dummy template. Compared to the imprinted polymers prepared using traditional polymerization techniques, the obtained DMIPs exhibited a regular spherical shape and were relatively monodisperse. The maximal sorption capacity (Qmax) of the resulting DMIPs for the 18 amino acids was up to 1444.3 mg g(-1). A kinetic binding study showed that the sorption capacity reached 85.40% of Qmax in 25 min and sorption equilibrium at 30 min. The imprint factors of the sorbents ranged from 2.86 to 6.9 for the 18 amino acids, which indicated that the DMIP sorbents have high selectivity. An HPLC-UV method for the simultaneous determination of 18 amino acids in tobacco and tobacco smoke was developed using the DMIPs as sorbents for solid phase extraction (SPE) in the sample pretreatment procedure. Under the optimum experimental conditions, the materials had enrichment factors of up to 200 for the amino acids, and the recoveries of the 18 amino acids in tobacco smoke were in the range from 79% to 104% with relative standard deviations of less than 7.4%. It indicated that the obtained DMIP sorbents could specifically recognize the amino acids from complicated samples.


Assuntos
Aminoácidos/análise , Aminoácidos/isolamento & purificação , Glutamatos/química , Impressão Molecular/métodos , Nicotiana/química , Polímeros/síntese química , Extração em Fase Sólida/métodos , Adsorção , Aminoácidos/química , Cromatografia Líquida de Alta Pressão , Microesferas , Polímeros/química , Dióxido de Silício/química , Propriedades de Superfície
16.
J Agric Food Chem ; 59(13): 7172-7, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21662235

RESUMO

Tobacco-specific N-nitrosamines (TSNAs) and benzo[a]pyrene (B[a]P) in mainstream cigarette smoke (MSS) cause smoking-related diseases and environmental pollution. Porphyrins were added to cigarette filters to reduce B[a]P (porphyrins A-E) and TSNAs (porphyrin F) in MSS. The porphyrin-B[a]P and porphyrin F-TSNAs (N'-nitrosoanabasine (NAB), N'-nitrosoanatabine (NAT), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and N-nitrosonornicotine (NNN)) interactions were investigated by fluorescence quenching and UV-visible spectroscopy. The correlation coefficients were 0.987-0.997 (B[a]P) and 0.994-0.999 (TSNAs), and the binding constants were (1.67-5.02) × 10(5) (B[a]P) and 3.42 × 10(3)-1.40 × 10(4) (TSNAs). Up to 36.72% of B[a]P and 46.67% of the TSNAs were eliminated from MSS, with greater reductions when more porphyrin was included in the filter. With the same mass of porphyrin in the filter, the reduction trend for B[a]P by porphyrins A-E was A > B > C > D > E. The reduction trend for TSNAs by porphyrin F was NNN > NAB > NNK > NAT. The porphyrin mode of action is possibly through strong π-π interactions.


Assuntos
Benzo(a)pireno/análise , Filtração/instrumentação , Nicotiana/química , Nitrosaminas/análise , Porfirinas/administração & dosagem , Fumaça/análise , Carcinógenos/análise , Fumar , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA