Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Microencapsul ; 41(3): 226-254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560994

RESUMO

Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.


LBNPs are tiny artificial particles made of lipids using different formulation methods. They are powerful and versatile delivery platforms with great potential as anticancer therapies. LBNPs have been tested in clinical applications and can safely deliver anticancer agents, including vaccine payloads designed to target various cancer types.LBNPs' size, surface charge, and targeting ligands can be modified during formulation, and they can be administered to specific tissues via various routes. LBNPs can target tumours and release their payload via active, passive, or stimuli-responsive mechanisms.Active targeting requires surface modification in order to target and deliver their payload, while passive targeting do not. Stimuli-responsive release mechanisms move to the tumour microenvironment and release their payload upon an internal or external stimulus.There are several challenges faced by LBNPs in delivering cancer drugs and vaccines, but advanced research methods have opened new doors vital for expanding their applications in clinical oncology.LBNPs offer the advantage of enhanced drug stability and bioavailability, prolonged circulation time of therapeutic agents in the bloodstream, and improved efficacy in targeting cancerous tissues.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Lipídeos
2.
Mikrochim Acta ; 190(9): 357, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597027

RESUMO

Novel chiral capillary electrochromatography (CEC) microsystems were constructed based on Aspergillus sp. CM96. As a newly discovered intrinsic characteristic of the cell, cell chirality occupies an essential position in life evolution. Aspergillus sp. CM96 spore (CM96s) was chosen as a proof of concept to develop chiral capillary columns. Interestingly, various types of amino acid (AA) enantiomers were baseline separated under the optimized conditions. Furthermore, the time-dependent chiral interactions between AAs and CM96s were explored in a wider space. Pectinases generated from Aspergillus sp. CM96 fermentation were immobilized onto graphene oxide-functionalized capillary silica monoliths for separating AA enantiomers. Molecular docking simulations were performed to explore chiral separation mechanisms of pectinase for AA enantiomers. These results indicated that Aspergillus sp. CM96-based CEC microsystems have a significant advantage for chiral separation.


Assuntos
Eletrocromatografia Capilar , Simulação de Acoplamento Molecular , Aspergillus , Aminoácidos , Dióxido de Silício
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628887

RESUMO

The membrane of a cell, often compared to a dynamic city border, carries out an intricate dance of controlling entry and exit, guarding the valuable life processes occurring inside [...].


Assuntos
Membranas , Biofísica
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762004

RESUMO

The cell, the fundamental unit of life, is constantly subjected to a myriad of molecular biophysical disturbances [...].

5.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047668

RESUMO

The cryopreservation of red blood cells (RBCs) holds great potential for ensuring timely blood transfusions and maintaining an adequate RBC inventory. The conventional cryoprotectants (CPAs) have a lot of limitations, and there is an obvious need for novel, efficient, and biocompatible CPAs. Here, it is shown for the first time that the addition of dimethylglycine (DMG) improved the thawed RBC recovery from 11.55 ± 1.40% to 72.15 ± 1.22%. We found that DMG could reduce the mechanical damage by inhibiting ice formation and recrystallization during cryopreservation. DMG can also scavenge reactive oxygen species (ROS) and maintain endogenous antioxidant enzyme activities to decrease oxidative damage during cryopreservation. Furthermore, the properties of thawed RBCs were found to be similar to the fresh RBCs in the control. Finally, the technique for order performance by similarity to ideal solution (TOPSIS) was used to compare the performance of glycerol (Gly), hydroxyethyl starch (HES), and DMG in cryopreservation, and DMG exhibited the best efficiency. This work confirms the use of DMG as a novel CPA for cryopreservation of RBCs and may promote clinical transfusion therapy.


Assuntos
Criopreservação , Gelo , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Eritrócitos , Estresse Oxidativo
6.
Langmuir ; 38(26): 8012-8020, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35715215

RESUMO

Ca2+ overload has attracted an increasing attention due to its benefit of precise cancer therapy, but its efficacy is limited by the strong Ca2+ excretion of cancer cells. Moreover, monotherapy of Ca2+ overload usually fails to treat tumors satisfactorily. Herein, we develop a multifunctional nanosystem that could induce Ca2+ overload by multipathway and simultaneously produce chemotherapy for synergistic tumor therapy. The nanosystem (CaMSN@CUR) is prepared by synthesizing a Ca-doped mesoporous silica nanoparticle (CaMSN) followed by loading the anticancer drug curcumin (CUR). CaMSN serves as the basis Ca2+ generator to induce Ca2+ overload directly in the intracellular environment by acid-triggered Ca2+ release, while CUR could not only exhibit chemotherapy but also facilitate Ca2+ release from the endoplasmic reticulum to the cytoplasm and inhibit Ca2+ efflux out of cells to further enhance Ca2+ overload. The in vitro and in vivo results show that CaMSN@CUR could exhibit a remarkable cytotoxicity against 4T1 cells and significantly inhibit tumor growth in 4T1 tumor-bearing mice via the synergy of Ca2+ overload and CUR-mediated chemotherapy. It is expected that the designed CaMSN@CUR has a great potential for effective tumor therapy.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Dióxido de Silício
7.
J Sep Sci ; 45(11): 1918-1941, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35325510

RESUMO

So far, the potential of capillary electrophoresis in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption, and low cost. This review examines the implementations and advancements of capillary electrophoresis in different application fields (environmental, pharmaceutical, clinical, and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used ultraviolet-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review being focused on the development of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis, the new sample pretreatment techniques of microextraction and enrichment fit excellently to capillary electrophoresis in recent three years are also described briefly.


Assuntos
Eletroforese Capilar , Análise de Alimentos , Eletroforese Capilar/métodos , Preparações Farmacêuticas
8.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293340

RESUMO

To improve liposomes' usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid-CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.


Assuntos
Crioprotetores , Lipossomos , Crioprotetores/farmacologia , Gelo , Congelamento , Excipientes , Fosfolipídeos
9.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269780

RESUMO

Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.


Assuntos
Proteínas Anticongelantes , Gelo , Animais , Proteínas Anticongelantes/química , Criopreservação , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Cristalização , Congelamento
10.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955596

RESUMO

The cryopreservation of red blood cells (RBCs) plays a key role in blood transfusion therapy. Traditional cryoprotectants (CPAs) are mostly organic solvents and may cause side effects to RBCs, such as hemolysis and membrane damage. Therefore, it is necessary to find CPAs with a better performance and lower toxicity. Herein, we report for the first time that N-[Tri(hydroxymethyl)methyl]glycine (tricine) showed a great potential in the cryopreservation of sheep RBCs. The addition of tricine significantly increased the thawed RBCs' recovery from 19.5 ± 1.8% to 81.2 ± 8.5%. The properties of thawed RBCs were also maintained normally. Through mathematical modeling analysis, tricine showed a great efficiency in cryopreservation. We found that tricine had a good osmotic regulation capacity, which could mitigate the dehydration of RBCs during cryopreservation. In addition, tricine inhibited ice recrystallization, thereby decreasing the mechanical damage from ice. Tricine could also reduce oxidative damage during freezing and thawing by scavenging reactive oxygen species (ROS) and maintaining the activities of endogenous antioxidant enzymes. This work is expected to open up a new path for the study of novel CPAs and promote the development of cryopreservation of RBCs.


Assuntos
Antioxidantes , Gelo , Animais , Antioxidantes/farmacologia , Criopreservação , Crioprotetores/química , Crioprotetores/farmacologia , Eritrócitos , Glicina/análogos & derivados , Glicina/farmacologia , Ovinos
11.
Analyst ; 146(15): 4724-4736, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269779

RESUMO

Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Eletroforese Capilar , Inibidores Enzimáticos
12.
Analyst ; 146(1): 48-63, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33211035

RESUMO

DNA possesses various chemical and physical properties which make it important in biological analysis. The opportunity for DNA to 'meet' capillary-based microsystems is rapidly increasing owing to the expanding development of miniaturization. Novel capillary-based methods can provide favourable platforms for DNA-ligand interaction assay, DNA translocation study, DNA separation, DNA aptamer selection, DNA amplification assay, and DNA digestion. Meanwhile, DNA exhibits great potential in the fabrication of new capillary-based biosensors and enzymatic bioreactors. Moreover, DNA has received significant research interest in improving capillary electrophoresis (CE) performance. We focus on highlighting the advantages of combining DNA and capillary-based microsystems. The general trend presented in this review suggests that the 'meeting' has offered a stepping stone for the application of DNA and capillary-based microsystems in the field of analytical chemistry.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA/genética , Eletroforese Capilar , Miniaturização
13.
Anal Bioanal Chem ; 413(11): 3017-3026, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33635387

RESUMO

The long-term consumption of food with pesticide residues has harmful effects on human health and the demand for pesticide detection technology tends to be miniaturized and instant. To this end, we demonstrated the first application of indirectly detecting two carbamate pesticides, metolcarb and carbaryl, by gold nanoparticle-modified indium tin oxide electrode in dual-channel microchip electrophoresis and amperometric detection (ME-AD) system. m-Cresol and α-naphthol were obtained after pesticide hydrolysis in alkaline solution, and then separated and detected by ME-AD. Parameters including the detection potential and running buffer concentration and pH were optimized to improve the detection sensitivity and separation efficiency. Under the optimal conditions, the two analytes were completely separated within 80 s. m-Cresol and α-naphthol presented a wide linear range from 1 to 100 µM, with limits of detection of 0.16 µM and 0.34 µM, respectively (S/N = 3). Moreover, the reliability of this system was demonstrated by analyzing metolcarb and carbaryl in spiked vegetable samples.


Assuntos
Carbamatos/análise , Técnicas Eletroquímicas/métodos , Eletroforese em Microchip/métodos , Resíduos de Praguicidas/análise , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Verduras/química
14.
J Mater Sci Mater Med ; 32(9): 116, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460000

RESUMO

L-glutamate is an important component of protein. It can prevent gastrointestinal damage caused by NSAIDs. We constructed two-phase enteric-coated granules of aspirin and L-glutamate compound by extrusion spheronization method and fluidized bed coating. The subliminal effective dose of L-glutamate is 100 mg/kg tested by model of gastric ulcer of rats induced by aspirin and drug administration. HPLC-UV and UV-Vis methods were adopted to determine content and cumulative release of aspirin and L-glutamate as quality analysis method indexes. The prescription and process optimization were carried out with yield, sphericity and dissolution. The two-phase compound granules have good sphericity of 0.93 ± 0.05 (aspirin pellets) and 0.94 ± 0.02 (L-glutamate pellets), content of salicylic acid (0.24 ± 0.03)%, dissolution of aspirin (2.36 ± 0.11)%. Quality evaluation and preliminary stability meet the commercial requirements. The stored environment of compound preparation should be sealed in a cool and dark place.


Assuntos
Aspirina , Composição de Medicamentos , Ácido Glutâmico , Animais , Aspirina/administração & dosagem , Aspirina/síntese química , Aspirina/farmacologia , Química Farmacêutica/métodos , Química Farmacêutica/normas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Mucosa Gástrica/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/síntese química , Ácido Glutâmico/farmacologia , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Comprimidos com Revestimento Entérico
16.
Biotechnol Lett ; 39(1): 91-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27659032

RESUMO

OBJECTIVE: To develop a method to treat saline phenolic wastewater in a biological contact oxidation reactor (BCOR) with immobilized cells of a marine microorganism, Oceanimonas sp., isolated from seawater. RESULTS: Cells were immobilized on fibre carriers in the BCOR. Saline wastewater with phenol at 1.5 g/l and NaCl at 6 % (w/v) was treated. In continuous assays, 99 % removal of phenol was achieved and a kinetic model for the phenol degradation is presented based on Monod's equation. CONCLUSION: The BOCR system using immobilized cells of Oceanimonas efficiently treats saline phenolic wastewaters without having decrease the salinity of the wastewater.


Assuntos
Aeromonadaceae/metabolismo , Reatores Biológicos/microbiologia , Biodegradação Ambiental , Células Imobilizadas/metabolismo , Modelos Teóricos , Águas Residuárias/microbiologia
17.
ACS Biomater Sci Eng ; 10(2): 851-862, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38176101

RESUMO

In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.


Assuntos
Gelo , Vitrificação , Inulina/farmacologia , Inulina/metabolismo , Criopreservação/métodos , Eritrócitos/metabolismo , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Membrana Celular
18.
ACS Biomater Sci Eng ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832439

RESUMO

Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.

19.
Mater Horiz ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957038

RESUMO

Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.

20.
Ecol Evol ; 14(5): e11445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779528

RESUMO

Habitat is fundamental for facilitating various life activities in animals, for instance, snakes procure essential energy for survival and reproduction by selecting ambush microhabitats. While there has been extensive research on the selection of microhabitat for feeding in terrestrial and aquatic snakes, little is known about arboreal snakes. In the present study, we analyzed the ambush microhabitat preferences of Viridovipera stejnegeri, a widely distributed Asian pitviper in China, conducted association analysis between snake microhabitat and prey microhabitat and abundance to determine the ro5le of microhabitat selection in feeding. Employing random forest analysis and habitat selection functions, we further constructed a predictive framework for assessing the probability of ambush site selection by V. stejnegeri. Our results revealed that V. stejnegeri exhibited a distinct microhabitat preference for ambush prey. Among the 13 environmental factors assessed, V. stejnegeri showed pronounced preferences towards 12 of these factors, including climatic factors, geographical factors, and vegetation factors. Furthermore, although the preferences of V. stejnegeri overlapped substantially with those of its prey across multiple habitat factors, food abundance shows no significant association with various habitat factors of V. stejnegeri, and does not have significant predictive effect on habitat selection of V. stejnegeri. Therefore, we infer that V. stejnegeri does not preferentially select microhabitats with the highest food abundance, which does not support the hypothesis that "snakes select habitats based on the spatial distribution of prey abundance." By analyzing the characteristics of vegetation, geography, and climate, we conclude that V. stejnegeri tends to choose microhabitats with better ambush conditions to increase attack success rate, thereby achieving the optimal feeding success rate at the microhabitat scale, which is in line with the predictions of optimal foraging theory. This study provides new insights into the predation ecology and habitat selection of snakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA