Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 274: 120115, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088322

RESUMO

There is significant interest in using neuroimaging data to predict behavior. The predictive models are often interpreted by the computation of feature importance, which quantifies the predictive relevance of an imaging feature. Tian and Zalesky (2021) suggest that feature importance estimates exhibit low split-half reliability, as well as a trade-off between prediction accuracy and feature importance reliability across parcellation resolutions. However, it is unclear whether the trade-off between prediction accuracy and feature importance reliability is universal. Here, we demonstrate that, with a sufficient sample size, feature importance (operationalized as Haufe-transformed weights) can achieve fair to excellent split-half reliability. With a sample size of 2600 participants, Haufe-transformed weights achieve average intra-class correlation coefficients of 0.75, 0.57 and 0.53 for cognitive, personality and mental health measures respectively. Haufe-transformed weights are much more reliable than original regression weights and univariate FC-behavior correlations. Original regression weights are not reliable even with 2600 participants. Intriguingly, feature importance reliability is strongly positively correlated with prediction accuracy across phenotypes. Within a particular behavioral domain, there is no clear relationship between prediction performance and feature importance reliability across regression models. Furthermore, we show mathematically that feature importance reliability is necessary, but not sufficient, for low feature importance error. In the case of linear models, lower feature importance error is mathematically related to lower prediction error. Therefore, higher feature importance reliability might yield lower feature importance error and higher prediction accuracy. Finally, we discuss how our theoretical results relate with the reliability of imaging features and behavioral measures. Overall, the current study provides empirical and theoretical insights into the relationship between prediction accuracy and feature importance reliability.


Assuntos
Modelos Teóricos , Reprodutibilidade dos Testes , Modelos Lineares , Fenótipo , Tamanho da Amostra
2.
J Clin Med ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592058

RESUMO

Background: Major depressive disorder (MDD) is a leading cause of disability worldwide. At present, however, there are no established biomarkers that have been validated for diagnosing and treating MDD. This study sought to assess the diagnostic and predictive potential of the differences in serum amino acid concentration levels between MDD patients and healthy controls (HCs), integrating them into interpretable machine learning models. Methods: In total, 70 MDD patients and 70 HCs matched in age, gender, and ethnicity were recruited for the study. Serum amino acid profiling was conducted by means of chromatography-mass spectrometry. A total of 21 metabolites were analysed, with 17 from a preset amino acid panel and the remaining 4 from a preset kynurenine panel. Logistic regression was applied to differentiate MDD patients from HCs. Results: The best-performing model utilised both feature selection and hyperparameter optimisation and yielded a moderate area under the receiver operating curve (AUC) classification value of 0.76 on the testing data. The top five metabolites identified as potential biomarkers for MDD were 3-hydroxy-kynurenine, valine, kynurenine, glutamic acid, and xanthurenic acid. Conclusions: Our study highlights the potential of using an interpretable machine learning analysis model based on amino acids to aid and increase the diagnostic accuracy of MDD in clinical practice.

3.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405815

RESUMO

A pervasive dilemma in neuroimaging is whether to prioritize sample size or scan duration given fixed resources. Here, we systematically investigate this trade-off in the context of brain-wide association studies (BWAS) using resting-state functional magnetic resonance imaging (fMRI). We find that total scan duration (sample size × scan duration per participant) robustly explains individual-level phenotypic prediction accuracy via a logarithmic model, suggesting that sample size and scan duration are broadly interchangeable. The returns of scan duration eventually diminish relative to sample size, which we explain with principled theoretical derivations. When accounting for fixed costs associated with each participant (e.g., recruitment, non-imaging measures), we find that prediction accuracy in small-scale BWAS might benefit from much longer scan durations (>50 min) than typically assumed. Most existing large-scale studies might also have benefited from smaller sample sizes with longer scan durations. Both logarithmic and theoretical models of the relationships among sample size, scan duration and prediction accuracy explain well-predicted phenotypes better than poorly-predicted phenotypes. The logarithmic and theoretical models are also undermined by individual differences in brain states. These results replicate across phenotypic domains (e.g., cognition and mental health) from two large-scale datasets with different algorithms and metrics. Overall, our study emphasizes the importance of scan time, which is ignored in standard power calculations. Standard power calculations inevitably maximize sample size at the expense of scan duration. The resulting prediction accuracies are likely lower than would be produced with alternate designs, thus impeding scientific discovery. Our empirically informed reference is available for future study design: WEB_APPLICATION_LINK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA