Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Idioma
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(8): 3731-3739, 2020 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-33124348

RESUMO

Ammonia inhibition is an important factor impacting methane production efficiency during the anaerobic digestion of high-solid organic wastes. This study investigated the effect of micro-sized zero-valent iron (m-ZVI) on the anaerobic digestion of excess sewage sludge and thermal hydrolyzed sludge using batch mode experiments. The effect of m-ZVI on ammonia inhibition mitigation was also studied. Results showed that the kinetic characteristics of the methane production rate, lag phase, and methane production potential of the anaerobic digestion of excess sludge and thermal hydrolyzed sludge were not impacted by the addition of m-ZVI at a dosage of 4 g·L-1 and 10 g·L-1. However, during the inhibited anaerobic digestion process with a high ammonia concentration, the addition of 4 g·L-1 and 10 g·L-1 of m-ZVI was able to shorten the lag phase from 18.61 d (the control) to 17.22 d and 16.18 d, respectively. Moreover, the maximum methane production rate (based on the VS) increased from 6.34 mL·(d·g)-1(the control) to 7.84 mL·(d·g)-1 (4 g·L-1 m-ZVI) and 7.39 mL·(d·g)-1 (10 g·L-1 m-ZVI). The pH buffer system was not influenced by the chemical reaction of m-ZVI in the anaerobic digestion, although the relative abundance of the dominant methanogenic archaea (Methanosarcina) improved greatly from 30.71% (the control) to 53.50% (4 g·L-1 m-ZVI) and 60.30% (10 g·L-1 m-ZVI) at 27 d. This study proved that m-ZVI was incapable of improving the methane production potential of sewage sludge, while the mitigation of ammonia inhibition during anaerobic digestion was enhanced by the stimulating effect on methanogenic archaea.


Assuntos
Amônia , Ferro , Anaerobiose , Reatores Biológicos , Metano , Esgotos
2.
Huan Jing Ke Xue ; 41(3): 1425-1431, 2020 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-32608645

RESUMO

To study the migration and transformation of methylmercury during advanced anaerobic digestion of sludge and the role of sulfate, this study investigated the migration and transformation of methylmercury during different stages of sludge anaerobic digestion (AD) with thermal hydrolysis pretreatment and under different dosages of sulfate addition. The results showed that mercury methylation occurred in the initial stage of AD (Day 1-3), the ratio of methylmercury to total mercury increased from 0.024% (range of 0.019%-0.033%) to 0.038% (range of 0.030%-0.048%), and the net increment of methylmercury increased by 3.97, 6.09, 0.17, 3.71, and 1.66 times, respectively. In the following Day 3-5, the demethylation process occurred with the net yield of methylmercury decreased by 71.25% (ranging from 67.42% to 75.10%). Sulfate inhibited the methylation of mercury in the initial stage of AD, but had little effect on it in the late stage. This was related to the reduction of the bioavailability of neutral mercury complexes by charged groups of HgHS22- and HgS22-, as well as the immobilization of iron sulfide and mercury sulfide on S2- and bioavailable mercury. Redundancy analysis (RDA) showed that mercury methylation was affected by several factors:organic substances such as propionic acid, isobutyric acid, isovaleric acid, and Fe may promote mercury methylation, whereas protein and higher pH may be inhibitors of mercury methylation in AD of sludge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA