Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 568(7752): 336-343, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996318

RESUMO

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Assuntos
Autopsia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Circulação Cerebrovascular , Microcirculação , Suínos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Sobrevivência Celular , Artérias Cerebrais/fisiologia , Modelos Animais de Doenças , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/patologia , Inflamação/metabolismo , Inflamação/patologia , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Perfusão , Traumatismo por Reperfusão/prevenção & controle , Suínos/sangue , Sinapses/metabolismo , Sinapses/patologia , Fatores de Tempo , Vasodilatação
2.
Brain ; 143(3): 771-782, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011655

RESUMO

Small fibre neuropathy is a common pain disorder, which in many cases fails to respond to treatment with existing medications. Gain-of-function mutations of voltage-gated sodium channel Nav1.7 underlie dorsal root ganglion neuronal hyperexcitability and pain in a subset of patients with small fibre neuropathy. Recent clinical studies have demonstrated that lacosamide, which blocks sodium channels in a use-dependent manner, attenuates pain in some patients with Nav1.7 mutations; however, only a subgroup of these patients responded to the drug. Here, we used voltage-clamp recordings to evaluate the effects of lacosamide on five Nav1.7 variants from patients who were responsive or non-responsive to treatment. We show that, at the clinically achievable concentration of 30 µM, lacosamide acts as a potent sodium channel inhibitor of Nav1.7 variants carried by responsive patients, via a hyperpolarizing shift of voltage-dependence of both fast and slow inactivation and enhancement of use-dependent inhibition. By contrast, the effects of lacosamide on slow inactivation and use-dependence in Nav1.7 variants from non-responsive patients were less robust. Importantly, we found that lacosamide selectively enhances fast inactivation only in variants from responders. Taken together, these findings begin to unravel biophysical underpinnings that contribute to responsiveness to lacosamide in patients with small fibre neuropathy carrying select Nav1.7 variants.


Assuntos
Lacosamida/farmacologia , Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Neuropatia de Pequenas Fibras/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Humanos , Lacosamida/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/complicações , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Neuropatia de Pequenas Fibras/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Resultado do Tratamento , Adulto Jovem
3.
J Neurosci ; 39(3): 382-392, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30459225

RESUMO

Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing NaV1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain.SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.


Assuntos
Dor Crônica/genética , Células-Tronco Pluripotentes Induzidas , Resiliência Psicológica , Adulto , Criança , Dor Crônica/fisiopatologia , Eritromelalgia/genética , Eritromelalgia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Exoma/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiopatologia , Humanos , Imuno-Histoquímica , Individualidade , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Medição da Dor , Técnicas de Patch-Clamp , Células Receptoras Sensoriais
4.
J Physiol ; 597(14): 3751-3768, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087362

RESUMO

KEY POINTS: Voltage-gated sodium channels are critical for peripheral sensory neuron transduction and have been implicated in a number of painful and painless disorders. The ß-scorpion toxin, Cn2, is selective for NaV 1.6 in dorsal root ganglion neurons. NaV 1.6 plays an essential role in peripheral sensory neurons, specifically at the distal terminals of mechanosensing fibres innervating the skin and colon. NaV 1.6 activation also leads to enhanced response to mechanical stimulus in vivo. This works highlights the use of toxins in elucidating pain pathways moreover the importance of non-peripherally restricted NaV isoforms in pain generation. ABSTRACT: Peripheral sensory neurons express multiple voltage-gated sodium channels (NaV ) critical for the initiation and propagation of action potentials and transmission of sensory input. Three pore-forming sodium channel isoforms are primarily expressed in the peripheral nervous system (PNS): NaV 1.7, NaV 1.8 and NaV 1.9. These sodium channels have been implicated in painful and painless channelopathies and there has been intense interest in them as potential therapeutic targets in human pain. Emerging evidence suggests NaV 1.6 channels are an important isoform in pain sensing. This study aimed to assess, using pharmacological approaches, the function of NaV 1.6 channels in peripheral sensory neurons. The potent and NaV 1.6 selective ß-scorpion toxin Cn2 was used to assess the effect of NaV 1.6 channel activation in the PNS. The multidisciplinary approach included Ca2+ imaging, whole-cell patch-clamp recordings, skin-nerve and gut-nerve preparations and in vivo behavioural assessment of pain. Cn2 facilitates NaV 1.6 early channel opening, and increased persistent and resurgent currents in large-diameter dorsal root ganglion (DRG) neurons. This promotes enhanced excitatory drive and tonic action potential firing in these neurons. In addition, NaV 1.6 channel activation in the skin and gut leads to increased response to mechanical stimuli. Finally, intra-plantar injection of Cn2 causes mechanical but not thermal allodynia. This study confirms selectivity of Cn2 on NaV 1.6 channels in sensory neurons. Activation of NaV 1.6 channels, in terminals of the skin and viscera, leads to profound changes in neuronal responses to mechanical stimuli. In conclusion, sensory neurons expressing NaV 1.6 are important for the transduction of mechanical information in sensory afferents innervating the skin and viscera.


Assuntos
Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Sistema Nervoso Periférico/metabolismo , Pele/metabolismo , Vísceras/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
5.
J Biol Chem ; 292(22): 9262-9272, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28381558

RESUMO

Dominant mutations in voltage-gated sodium channel NaV1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. NaV1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel NaV1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in NaV1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood.


Assuntos
Eritromelalgia , Potenciais da Membrana/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Adolescente , Substituição de Aminoácidos , Criança , Eritromelalgia/genética , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Domínios Proteicos
6.
Mol Med ; 22: 338-348, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27496104

RESUMO

Idiopathic trigeminal neuralgia (TN) is a debilitating pain disorder characterized by episodic unilateral facial pain along the territory of branches of the trigeminal nerve. Human painful disorders, but not TN, have been linked to gain-of-function mutations in peripheral voltage-gated sodium channels (NaV1.7, NaV1.8 and NaV1.9). Gain-of-function mutations in NaV1.6, which is expressed in myelinated and unmyelinated CNS and peripheral nervous system neurons and supports neuronal high-frequency firing, have been linked to epilepsy but not to pain. Here, we describe an individual who presented with evoked and spontaneous paroxysmal unilateral facial pain, and carried a diagnosis of TN. Magnetic resonance imaging showed unilateral neurovascular compression, consistent with pain in areas innervated by the second branch of the trigeminal nerve. Genetic analysis as part of a phase 2 clinical study in patients with TN conducted by Convergence Pharmaceuticals Ltd revealed a previously undescribed de novo missense mutation in NaV1.6 (c.A406G; p.Met136Val). Whole-cell voltage-clamp recordings show that the Met136Val mutation significantly increases peak current density (1.5-fold) and resurgent current (1.6-fold) without altering gating properties. Current-clamp studies in trigeminal ganglion (TRG) neurons showed that Met136Val increased the fraction of high-firing neurons, lowered the current threshold and increased the frequency of evoked action potentials in response to graded stimuli. Our results demonstrate a novel NaV1.6 mutation in TN, and show that this mutation potentiates transient and resurgent sodium currents and leads to increased excitability in TRG neurons. We suggest that this gain-of-function NaV1.6 mutation may exacerbate the pathophysiology of vascular compression and contribute to TN.

7.
J Neurosci ; 33(41): 16310-22, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107962

RESUMO

The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.


Assuntos
Anestésicos Gerais/farmacologia , Nível de Alerta/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Superfamília Shaker de Canais de Potássio/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Desflurano , Núcleos Intralaminares do Tálamo/metabolismo , Isoflurano/análogos & derivados , Isoflurano/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Éteres Metílicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sevoflurano , Superfamília Shaker de Canais de Potássio/metabolismo , Compostos Orgânicos Voláteis/farmacologia
8.
Neurobiol Dis ; 68: 16-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704313

RESUMO

SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.


Assuntos
Hipocampo/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Convulsões/metabolismo , Convulsões/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Desempenho Psicomotor , Tempo de Reação/genética , Tempo de Reação/fisiologia , Convulsões/etiologia , Convulsões/genética
9.
Brain Commun ; 3(3): fcab212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557669

RESUMO

There is a pressing need for understanding of factors that confer resilience to pain. Gain-of-function mutations in sodium channel Nav1.7 produce hyperexcitability of dorsal root ganglion neurons underlying inherited erythromelalgia, a human genetic model of neuropathic pain. While most individuals with erythromelalgia experience excruciating pain, occasional outliers report more moderate pain. These differences in pain profiles in blood-related erythromelalgia subjects carrying the same pain-causative Nav1.7 mutation and markedly different pain experience provide a unique opportunity to investigate potential genetic factors that contribute to inter-individual variability in pain. We studied a patient with inherited erythromelalgia and a Nav1.7 mutation (c.4345T>G, p. F1449V) with severe pain as is characteristic of most inherited erythromelalgia patients, and her mother who carries the same Nav1.7 mutation with a milder pain phenotype. Detailed six-week daily pain diaries of pain episodes confirmed their distinct pain profiles. Electrophysiological studies on subject-specific induced pluripotent stem cell-derived sensory neurons from each of these patients showed that the excitability of these cells paralleled their pain phenotype. Whole-exome sequencing identified a missense variant (c.2263C>T, p. D755N) in KCNQ3 (Kv7.3) in the pain resilient mother. Voltage-clamp recordings showed that co-expression of Kv7.2-wild type (WT)/Kv7.3-D755N channels produced larger M-currents than that of Kv7.2-WT/Kv7.3-WT. The difference in excitability of the patient-specific induced pluripotent stem cell-derived sensory neurons was mimicked by modulating M-current levels using the dynamic clamp and a model of the mutant Kv7.2-WT/Kv7.3-D755N channels. These results show that a 'pain-in-a-dish' model can be used to explicate genetic contributors to pain, and confirm that KCNQ variants can confer pain resilience via an effect on peripheral sensory neurons.

10.
Biochem Pharmacol ; 181: 114082, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32524995

RESUMO

The role of voltage-gated sodium (NaV) channels in pain perception is indisputable. Of particular interest as targets for the development of pain therapeutics are the tetrodotoxin-resistant isoforms NaV1.8 and NaV1.9, based on animal as well as human genetic studies linking these ion channel subtypes to the pathogenesis of pain. However, only a limited number of inhibitors selectively targeting these channels have been reported. HSTX-I is a peptide toxin identified from saliva of the leech Haemadipsa sylvestris. The native 23-residue peptide, stabilised by two disulfide bonds, has been reported to inhibit rat NaV1.8 and mouse NaV1.9 with low micromolar activity, and may therefore represent a scaffold for development of novel modulators with activity at human tetrodotoxin-resistant NaV isoforms. We synthetically produced this hydrophobic peptide in high yield using a one-pot oxidation and single step purification and determined the three-dimensional solution structure of HSTX-I using NMR solution spectroscopy. However, in our hands, the synthetic HSTX-I displayed only very modest activity at human NaV1.8 and NaV1.9, and lacked analgesic efficacy in a murine model of inflammatory pain.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptídeos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Toxinas Biológicas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Animais , Células Cultivadas , Humanos , Hiperalgesia/prevenção & controle , Sanguessugas/química , Sanguessugas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/química , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/química , Soluções/química , Toxinas Biológicas/química , Canais de Sódio Disparados por Voltagem/genética
11.
Sci Adv ; 5(10): eaax4755, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31681845

RESUMO

Sodium channel NaV1.7 controls firing of nociceptors, and its role in human pain has been validated by genetic and functional studies. However, little is known about NaV1.7 trafficking or membrane distribution along sensory axons, which can be a meter or more in length. We show here with single-molecule resolution the first live visualization of NaV1.7 channels in dorsal root ganglia neurons, including long-distance microtubule-dependent vesicular transport in Rab6A-containing vesicles. We demonstrate nanoclusters that contain a median of 12.5 channels at the plasma membrane on axon termini. We also demonstrate that inflammatory mediators trigger an increase in the number of NaV1.7-carrying vesicles per axon, a threefold increase in the median number of NaV1.7 channels per vesicle and a ~50% increase in forward velocity. This remarkable enhancement of NaV1.7 vesicular trafficking and surface delivery under conditions that mimic a disease state provides new insights into the contribution of NaV1.7 to inflammatory pain.


Assuntos
Axônios/metabolismo , Mediadores da Inflamação/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Gânglios Espinais/metabolismo , Humanos , Inflamação/patologia , Ativação do Canal Iônico , Camundongos , Dor/patologia , Ratos , Proteínas rab de Ligação ao GTP/metabolismo
12.
Gene ; 408(1-2): 133-45, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18077107

RESUMO

We investigated the role of the 3' non-coding region of a mouse voltage-gated potassium channel mRNA (mKv1.4 mRNA) in post-transcriptional regulation of gene expression. In contrast to an earlier report from studies carried out in Xenopus oocytes, we found that 3' non-coding region sequences of mKv1.4 mRNAs did not significantly affect expression of a heterologous reporter RNA in vitro or in mammalian cells/cell lines. Instead, our data revealed a possible role for alternative polyadenylation mediated by distinct determinants approximately 0.2 kb and approximately 1.2 kb downstream of the Kv1.4 coding region. The use of the downstream polyadenylation signal correlated with the synthesis of a larger Kv1.4 mRNA isoform that was more abundantly expressed than the smaller mRNA species, whose expression was regulated by the upstream polyadenylation signal. Our results suggest that the relative strengths of the polyadenylation signals are major determinants of overall Kv1.4 mRNA abundance in cells.


Assuntos
Regiões 3' não Traduzidas/química , Canal de Potássio Kv1.4/genética , Poliadenilação , Animais , Sequência de Bases , Células Cultivadas , Células HeLa , Humanos , Canal de Potássio Kv1.4/metabolismo , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Xenopus
13.
Neuron ; 93(5): 1165-1179.e6, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28238546

RESUMO

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Animais , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Camundongos , Fenótipo , Convulsões/genética , Convulsões/metabolismo
14.
Neurotherapeutics ; 12(1): 234-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256961

RESUMO

Inhibitors of voltage-gated sodium channels (Na(v)) have been used as anticonvulsants since the 1940s, while potassium channel activators have only been investigated more recently. We here describe the discovery of 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a thioanalog of riluzole, as a potent, novel anticonvulsant, which combines the two mechanisms. SKA-19 is a use-dependent NaV channel blocker and an activator of small-conductance Ca(2+)-activated K(+) channels. SKA-19 reduces action potential firing and increases medium afterhyperpolarization in CA1 pyramidal neurons in hippocampal slices. SKA-19 is orally bioavailable and shows activity in a broad range of rodent seizure models. SKA-19 protects against maximal electroshock-induced seizures in both rats (ED50 1.6 mg/kg i.p.; 2.3 mg/kg p.o.) and mice (ED50 4.3 mg/kg p.o.), and is also effective in the 6-Hz model in mice (ED50 12.2 mg/kg), Frings audiogenic seizure-susceptible mice (ED50 2.2 mg/kg), and the hippocampal kindled rat model of complex partial seizures (ED50 5.5 mg/kg). Toxicity tests for abnormal neurological status revealed a therapeutic index (TD50/ED50) of 6-9 following intraperitoneal and of 33 following oral administration. SKA-19 further reduced acute pain in the formalin pain model and raised allodynic threshold in a sciatic nerve ligation model. The anticonvulsant profile of SKA-19 is comparable to riluzole, which similarly affects Na(V) and KCa2 channels, except that SKA-19 has a ~4-fold greater duration of action owing to more prolonged brain levels. Based on these findings we propose that compounds combining KCa2 channel-activating and Na(v) channel-blocking activity exert broad-spectrum anticonvulsant and analgesic effects.


Assuntos
Anticonvulsivantes/farmacologia , Riluzol/análogos & derivados , Riluzol/farmacologia , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA