Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000034

RESUMO

Membrane phase separation to form micron-scale domains of lipids and proteins occurs in artificial membranes; however, a similar large-scale phase separation has not been reported in the plasma membrane of the living cells. We show here that a stable micron-scale protein-depleted region is generated in the plasma membrane of yeast mutants lacking phosphatidylserine at high temperatures. We named this region the 'void zone'. Transmembrane proteins and certain peripheral membrane proteins and phospholipids are excluded from the void zone. The void zone is rich in ergosterol, and requires ergosterol and sphingolipids for its formation. Such properties are also found in the cholesterol-enriched domains of phase-separated artificial membranes, but the void zone is a novel membrane domain that requires energy and various cellular functions for its formation. The formation of the void zone indicates that the plasma membrane in living cells has the potential to undergo phase separation with certain lipid compositions. We also found that void zones were frequently in contact with vacuoles, in which a membrane domain was also formed at the contact site.


Assuntos
Fosfatidilserinas , Saccharomyces cerevisiae , Membrana Celular , Microdomínios da Membrana , Fosfolipídeos , Saccharomyces cerevisiae/genética , Esfingolipídeos
2.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692871

RESUMO

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Assuntos
Antivirais , COVID-19 , Colesterol , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Humanos , COVID-19/virologia , Colesterol/metabolismo , Células Vero , Chlorocebus aethiops , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Internalização do Vírus/efeitos dos fármacos , Betacoronavirus/efeitos dos fármacos , Pandemias , Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia
3.
J Chem Phys ; 151(7): 074702, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438706

RESUMO

The vibrational modes of chemisorbed CO on a Si(001) surface are investigated by means of transmission Fourier-transform infrared absorption spectroscopy. We observed the three components corresponding to the stretching vibration of the terminal-site CO adsorbed on the down-dimer sites of a Si(001) surface. The symmetric stretching vibration and asymmetric stretching vibration are observed separately. This assignment is consistent with the polarization dependence of the incident light and with the vibrational modes obtained by performing theoretical calculations. We found that both the intradimer row and interdimer row coupling should be considered to explain the appearance of the three components.

4.
Phys Chem Chem Phys ; 20(2): 1114-1126, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239429

RESUMO

We investigated the electronic states of α-sexithiophene (α-6T) on by means of angle-resolved photoelectron spectroscopy using synchrotron radiation. The characteristic features of π states are observed in the valence region. The increase in the population of the S1 band, assigned to the surface state of , upon deposition of α-6T was measured and the change in the electron density was evaluated. The band diagram was constructed based on the measurement of the HOMO level and work function. The work function was found to change with the α-6T thickness in a characteristic manner. We constructed a model of the electron transfer at each growth stage based on the core levels of the substrate (Si 2p, Ag 3d) and α-6T molecule (C 1s, S 2p), as well as the valence state and work function change.

5.
Eukaryot Cell ; 13(3): 363-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390140

RESUMO

Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.


Assuntos
Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Endossomos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 288(5): 3594-608, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23250744

RESUMO

The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH(2)-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH(2)-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Endocitose/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fosfatidilserinas/metabolismo , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Triptofano/metabolismo , Triptofano/farmacologia , Ubiquitinação/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/enzimologia , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/enzimologia
7.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212328

RESUMO

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Assuntos
Lipoilação , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Microscopia , Imagem Individual de Molécula , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Colesterol , Análise por Conglomerados , Imunidade Inata
8.
J Biol Chem ; 287(13): 9901-9909, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22291022

RESUMO

Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Mutação , Fototropinas/metabolismo , Multimerização Proteica , Chlamydomonas reinhardtii/genética , Fosforilação/genética , Fototropinas/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Eukaryot Cell ; 11(1): 2-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22117027

RESUMO

The cortical recruitment and accumulation of the small GTPase Cdc42 are crucial steps in the establishment of polarity, but this process remains obscure. Cdc24 is an upstream regulator of budding yeast Cdc42 that accelerates the exchange of GDP for GTP in Cdc42 via its Dbl homology (DH) domain. Here, we isolated five novel temperature-sensitive (ts) cdc24 mutants, the green fluorescent protein (GFP)-fused proteins of which lose their polarized localization at the nonpermissive temperature. All amino acid substitutions in the mutants were mapped to the NH2-terminal region of Cdc24, including the calponin homology (CH) domain. These Cdc24-ts mutant proteins did not interact with Bem1 at the COOH-terminal PB1 domain, suggesting a lack of exposure of the PB1 domain in the mutant proteins. The cdc24-ts mutants were also defective in polarization in the absence of Bem1. It was previously reported that a fusion protein containing Cdc24 and the p21-activated kinase (PAK)-like kinase Cla4 could bypass the requirement for Bem1 in polarity cue-independent budding (i.e., symmetry breaking). Cdc24-ts-Cla4 fusion proteins also showed ts localization at the polarity site. We propose that the NH2-terminal region unmasks the DH and PB1 domains, leading to the activation of Cdc42 and interaction with Bem1, respectively, to initiate cell polarization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sequência Conservada , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
Dev Cell ; 13(5): 743-751, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981141

RESUMO

An important problem in polarized morphogenesis is how polarized transport of membrane vesicles is spatiotemporally regulated. Here, we report that a local change in the transbilayer phospholipid distribution of the plasma membrane regulates the axis of polarized growth. Type 4 P-type ATPases Lem3p-Dnf1p and -Dnf2p are putative heteromeric phospholipid flippases in budding yeast that are localized to polarized sites on the plasma membrane. The lem3Delta mutant exhibits prolonged apical growth due to a defect in the switch to isotropic bud growth. In lem3Delta cells, the small GTPase Cdc42p remains polarized at the bud tip where phosphatidylethanolamine remains exposed on the outer leaflet. Intriguingly, phosphatidylethanolamine and phosphatidylserine stimulate GTPase-activating protein (GAP) activity of Rga1p and Rga2p toward Cdc42p, whereas PI(4,5)P(2) inhibits it. We propose that a redistribution of phospholipids to the inner leaflet of the plasma membrane triggers the dispersal of Cdc42p from the apical growth site, through activation of GAPs.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Proliferação de Células , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética
11.
Nat Commun ; 13(1): 2347, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534464

RESUMO

Epithelial cells provide cell-cell adhesion that is essential to maintain the integrity of multicellular organisms. Epithelial cell-characterizing proteins, such as epithelial junctional proteins and transcription factors are well defined. However, the role of lipids in epithelial characterization remains poorly understood. Here we show that the phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is enriched in the plasma membrane (PM) of epithelial cells. Epithelial cells lose their characteristics upon depletion of PM PI(4,5)P2, and synthesis of PI(4,5)P2 in the PM results in the development of epithelial-like morphology in osteosarcoma cells. PM localization of PARD3 is impaired by depletion of PM PI(4,5)P2 in epithelial cells, whereas expression of the PM-targeting exocyst-docking region of PARD3 induces osteosarcoma cells to show epithelial-like morphological changes, suggesting that PI(4,5)P2 regulates epithelial characteristics by recruiting PARD3 to the PM. These results indicate that a high level of PM PI(4,5)P2 plays a crucial role in the maintenance of epithelial characteristics.


Assuntos
Osteossarcoma , Fosfatidilinositóis , Adesão Celular , Membrana Celular/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Osteossarcoma/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo
12.
Mol Biol Cell ; 32(15): 1374-1392, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038161

RESUMO

Sterols are important lipid components of the plasma membrane (PM) in eukaryotic cells, but it is unknown how the PM retains sterols at a high concentration. Phospholipids are asymmetrically distributed in the PM, and phospholipid flippases play an important role in generating this phospholipid asymmetry. Here, we provide evidence that phospholipid flippases are essential for retaining ergosterol in the PM of yeast. A mutant in three flippases, Dnf1-Lem3, Dnf2-Lem3, and Dnf3-Crf1, and a membrane protein, Sfk1, showed a severe growth defect. We recently identified Sfk1 as a PM protein involved in phospholipid asymmetry. The PM of this mutant showed high permeability and low density. Staining with the sterol probe filipin and the expression of a sterol biosensor revealed that ergosterol was not retained in the PM. Instead, ergosterol accumulated in an esterified form in lipid droplets. We propose that ergosterol is retained in the PM by the asymmetrical distribution of phospholipids and the action of Sfk1. Once phospholipid asymmetry is severely disrupted, sterols might be exposed on the cytoplasmic leaflet of the PM and actively transported to the endoplasmic reticulum by sterol transfer proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Ergosterol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/enzimologia
13.
Mol Biol Cell ; 18(1): 295-312, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17093059

RESUMO

Phospholipid translocases (PLTs) have been implicated in the generation of phospholipid asymmetry in membrane bilayers. In budding yeast, putative PLTs are encoded by the DRS2 gene family of type 4 P-type ATPases. The homologous proteins Cdc50p, Lem3p, and Crf1p are potential noncatalytic subunits of Drs2p, Dnf1p and Dnf2p, and Dnf3p, respectively; these putative heteromeric PLTs share an essential function for cell growth. We constructed temperature-sensitive mutants of CDC50 in the lem3Delta crf1Delta background (cdc50-ts mutants). Screening for multicopy suppressors of cdc50-ts identified YPT31/32, two genes that encode Rab family small GTPases that are involved in both the exocytic and endocytic recycling pathways. The cdc50-ts mutants did not exhibit major defects in the exocytic pathways, but they did exhibit those in endocytic recycling; large membranous structures containing the vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor Snc1p intracellularly accumulated in these mutants. Genetic results suggested that the YPT31/32 effector RCY1 and CDC50 function in the same signaling pathway, and simultaneous overexpression of CDC50, DRS2, and GFP-SNC1 restored growth as well as the plasma membrane localization of GFP-Snc1p in the rcy1Delta mutant. In addition, Rcy1p coimmunoprecipitated with Cdc50p-Drs2p. We propose that the Ypt31p/32p-Rcy1p pathway regulates putative phospholipid translocases to promote formation of vesicles destined for the trans-Golgi network from early endosomes.


Assuntos
Endocitose , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Endossomos/ultraestrutura , Proteínas F-Box , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genes Supressores , Complexos Multiproteicos/metabolismo , Mutação/genética , Ligação Proteica , Transporte Proteico , Proteínas R-SNARE/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Vesículas Secretórias/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/isolamento & purificação , Rede trans-Golgi/metabolismo
14.
Sci Rep ; 10(1): 12474, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719316

RESUMO

Lipid asymmetry in biological membranes is essential for various cell functions, such as cell polarity, cytokinesis, and apoptosis. P4-ATPases (flippases) are involved in the generation of such asymmetry. In Saccharomyces cerevisiae, the protein kinases Fpk1p/Fpk2p activate the P4-ATPases Dnf1p/Dnf2p by phosphorylation. Previously, we have shown that a blue-light-dependent protein kinase, phototropin from Chlamydomonas reinhardtii (CrPHOT), complements defects in an fpk1Δ fpk2Δ mutant. Herein, we investigated whether CrPHOT optically regulates P4-ATPase activity. First, we demonstrated that the translocation of NBD-labelled phospholipids to the cytoplasmic leaflet via P4-ATPases was promoted by blue-light irradiation in fpk1Δ fpk2Δ cells with CrPHOT. In addition, blue light completely suppressed the defects in membrane functions (such as endocytic recycling, actin depolarization, and apical-isotropic growth switching) caused by fpk1Δ fpk2Δ mutations. All responses required the kinase activity of CrPHOT. Hence, these results indicate the utility of CrPHOT as a powerful and first tool for optogenetic manipulation of P4-ATPase activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Ativação Enzimática , Optogenética/métodos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS One ; 15(7): e0236520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730286

RESUMO

In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants. Cfs1p is a membrane protein of the PQ-loop family and is localized to endosomal/Golgi membranes, but its relationship to phospholipid asymmetry remains unknown. The neo1Δ cfs1Δ mutant appears to function normally in membrane trafficking but may function abnormally in the regulation of phospholipid asymmetry. To identify a gene that is functionally relevant to NEO1 and CFS1, we isolated a mutation that is synthetically lethal with neo1Δ cfs1Δ and identified ERD1. Erd1p is a Golgi membrane protein that is involved in the transport of phosphate (Pi) from the Golgi lumen to the cytoplasm. The Neo1p-depleted cfs1Δ erd1Δ mutant accumulated plasma membrane proteins in the Golgi, perhaps due to a lack of phosphatidylinositol 4-phosphate. The Neo1p-depleted cfs1Δ erd1Δ mutant also exhibited abnormal structure of the endoplasmic reticulum (ER) and induced an unfolded protein response, likely due to defects in the retrieval pathway from the cis-Golgi region to the ER. Genetic analyses suggest that accumulation of Pi in the Golgi lumen is responsible for defects in Golgi functions in the Neo1p-depleted cfs1Δ erd1Δ mutant. Thus, the luminal ionic environment is functionally relevant to phospholipid asymmetry. Our results suggest that flippase-mediated phospholipid redistribution and luminal Pi concentration coordinately regulate Golgi membrane functions.


Assuntos
Complexo de Golgi/metabolismo , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Proteínas de Transferência de Fosfolipídeos/genética , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
16.
J Steroid Biochem Mol Biol ; 185: 71-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031146

RESUMO

We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 µg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Conservadores da Densidade Óssea/farmacologia , Calcifediol/farmacologia , Calcitriol/biossíntese , Calcitriol/sangue , Raquitismo/tratamento farmacológico , Animais , Densidade Óssea/efeitos dos fármacos , Calcitriol/genética , Cálcio/sangue , Colestanotriol 26-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/sangue , Fósforo/sangue , Vitamina D3 24-Hidroxilase/biossíntese , Vitamina D3 24-Hidroxilase/genética
17.
Mol Biol Cell ; 16(12): 5592-609, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16195350

RESUMO

Specific changes in membrane lipid composition are implicated in actin cytoskeletal organization, vesicle formation, and control of cell polarity. Cdc50p, a membrane protein in the endosomal/trans-Golgi network compartments, is a noncatalytic subunit of Drs2p, which is implicated in translocation of phospholipids across lipid bilayers. We found that the cdc50Delta mutation is synthetically lethal with mutations affecting the late steps of ergosterol synthesis (erg2 to erg6). Defects in cell polarity and actin organization were observed in the cdc50Delta erg3Delta mutant. In particular, actin patches, which are normally found at cortical sites, were assembled intracellularly along with their assembly factors, including Las17p, Abp1p, and Sla2p. The exocytic SNARE Snc1p, which is recycled by an endocytic route, was also intracellularly accumulated, and inhibition of endocytic internalization suppressed the cytoplasmic accumulation of both Las17p and Snc1p. Simultaneous loss of both phospholipid asymmetry and sterol structural integrity could lead to accumulation of endocytic intermediates capable of initiating assembly of actin patches in the cytoplasm.


Assuntos
Actinas/biossíntese , ATPases Transportadoras de Cálcio/metabolismo , Endocitose/fisiologia , Ergosterol/farmacologia , Membranas Intracelulares/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Polaridade Celular , Cromatografia Gasosa-Espectrometria de Massas , Deleção de Genes , Genótipo , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
J Biochem ; 164(2): 127-140, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554278

RESUMO

It is commonly observed that freshwater fish contain lower amounts of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), than marine fish species. In this study, we performed a detailed comparative analysis of phospholipids (PLs) and triacylglycerols (TAGs) from Gymnogobius isaza, a freshwater goby endemic to Lake Biwa inhabiting the lake bottom, and Gymnogobius urotaenia, a related goby that inhabits the shore of Lake Biwa. We found that tissues from G. isaza contain remarkably high amounts of omega-3 LC-PUFAs in both PLs and TAGs. Mass spectrometry analysis of TAGs demonstrated that the most abundant TAG molecular species were TAG (16:0/18:1/20:5), followed by TAG (14:0/18:1/20:5), in which EPA is incorporated into TAG at either the sn-1 or sn-3 positions. We isolated cDNAs encoding acyl-CoA: diacylglycerol acyltransferase designated as GiDGAT1 and GiDGAT2, from G. isaza. Expression studies using a neutral lipid-deficient Saccharomyces cerevisiae mutant strain demonstrated that both GiDGAT1 and GiDGAT2 possessed diacylglycerol acyltransferase activity, and preferential incorporation of LC-PUFA into TAG was observed in the presence of GiDGAT1. This study revealed the novel lipid profiles of G. isaza and identified the enzymes that were involved in the production of PUFA-containing TAGs.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Triglicerídeos/biossíntese , Animais , Ácidos Graxos Ômega-3/química , Peixes , Japão , Lagos , Triglicerídeos/química
19.
Mol Biol Cell ; 29(10): 1203-1218, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29540528

RESUMO

Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity. Overexpression of SFK1 decreased PS/PE exposure in lem3Δ mutant cells. Consistent with this, lem3Δ sfk1Δ double mutant cells exposed more PS/PE than the lem3Δ mutant. Sfk1p was previously implicated in the regulation of the phosphatidylinositol-4 kinase Stt4p, but the effect of Sfk1p on PS/PE exposure in lem3Δ was independent of Stt4p. Surprisingly, Sfk1p did not facilitate phospholipid flipping but instead repressed it, even under ATP-depleted conditions. We propose that Sfk1p negatively regulates transbilayer movement of phospholipids irrespective of directions. In addition, we showed that the permeability of the plasma membrane was dramatically elevated in the lem3Δ sfk1Δ double mutant in comparison with the corresponding single mutants. Interestingly, total ergosterol was decreased in the lem3Δ sfk1Δ mutant. Our results suggest that phospholipid asymmetry is required for the maintenance of low plasma membrane permeability.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Depsipeptídeos/farmacologia , Ergosterol/farmacologia , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Proteínas de Membrana/química , Modelos Biológicos , Mutação/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Genetics ; 173(2): 527-39, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16547104

RESUMO

A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.


Assuntos
Actinas/biossíntese , Actinas/genética , Proteínas de Transporte/genética , Genes Fúngicos , Proteínas dos Microfilamentos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Actinas/química , Actinas/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto , Expressão Gênica , Genes Dominantes , Proteínas dos Microfilamentos/metabolismo , Mutação , Fenótipo , Profilinas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA