Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 31(5): 1437-1450, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35982620

RESUMO

Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Animais , Camundongos , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039838

RESUMO

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Assuntos
Exossomos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fibrose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
3.
Mol Ther ; 30(10): 3300-3312, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581939

RESUMO

Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.


Assuntos
Antineoplásicos , Simportadores , Animais , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Eletrólitos , Rim/metabolismo , Camundongos , Membro 1 da Família 12 de Carreador de Soluto , Simportadores/genética , Água
4.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127536

RESUMO

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares , Terapia Genética/métodos , Receptor Celular 1 do Vírus da Hepatite A/genética , Fatores de Transcrição da Família Snail/genética , Fator de Transcrição RelA/genética , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Eritrócitos , Fibrose , Inflamação/terapia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Peptídeos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Traumatismo por Reperfusão/complicações , Fatores de Transcrição da Família Snail/metabolismo , Fator de Transcrição RelA/metabolismo , Obstrução Ureteral/complicações
5.
Sheng Li Xue Bao ; 74(1): 67-72, 2022 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-35199127

RESUMO

Extracellular vesicles (EVs) are lipid bilayer-enclosed structures containing diverse bioactive cargoes that play a major role in intercellular communication in both physiological and pathological conditions. Currently, the field of EV-based therapy has been rapidly growing, and two main therapeutic uses of EVs can be surmised: (i) exploiting stem cell-derived EVs as therapeutic agents; and (ii) employing EVs as natural therapeutic vectors for drug delivery. This review will discuss the recent advances in EV-based therapy in the treatment of renal disease.


Assuntos
Vesículas Extracelulares , Nefropatias , Comunicação Celular , Sistemas de Liberação de Medicamentos , Humanos , Nefropatias/terapia
6.
J Transl Med ; 19(1): 355, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404433

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a leading cause of renal failure, whereas the effective and early diagnostic biomarkers are still lacking. METHODS: Fourteen cytokines and chemokines mRNA were detected in urinary extracellular vesicles (EVs) from the screening cohort including 4 healthy controls (HC), 4 diabetes mellitus (DM) and 4 biopsy-proven DN patients, and was validated in another 16 HC and 15 DM and 28 DN patients. Correlation analysis was performed between the candidate biomarkers and clinic parameters as well as kidney histological changes. The findings were also confirmed in DN rat model with single injection of STZ. RESULTS: The number of small EVs secreted in urine was increased in DN patients compared to DM patients and healthy controls, with expression of AQP1 (a marker of proximal tubules) and AQP2 (a marker of distal/collecting tubules). Small EVs derived CCL21 mRNA increased significantly in DN patients and correlated with level of proteinuria and eGFR. Interestingly, elevated CCL21 mRNA from urine small EVs was observed in DN patients with normal renal function and could discriminate early DN patients from DM more efficiently compared to eGFR and proteinuria. CCL21 also showed an accurate diagnostic ability in distinguishing incipient from overt DN. Histologically, CCL21 mRNA expression increased progressively with the deterioration of tubulointerstitial inflammation and showed the highest level in nodular sclerosis group (class III) in DN patients. Remarkable infiltration of CD3 positive T cells including both CD4 and CD8 positive T cell population were observed in DN patients with high-CCL21 expression. Besides, accumulation of CD3 positive T cells correlated with level of urinary small EVs derived CCL21 and co-localized with CCL21 in the tubulointerstitium in DN patients. Finally, the correlation of CCL21 expression in renal cortex and urinary small EVs was confirmed in STZ-induced DN rat model. CONCLUSIONS: Urinary small EVs derived CCL21 mRNA may serve as early biomarker for identifying DN linked with pathogenesis. CCL21 mRNA mediated T cell infiltration may constitute the key mechanism of chronic inflammation in DN.


Assuntos
Quimiocina CCL21 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Vesículas Extracelulares , Animais , Aquaporina 2 , Biomarcadores , Quimiocina CCL21/genética , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Humanos , RNA Mensageiro/genética , Ratos
7.
Acta Pharmacol Sin ; 42(12): 2106-2119, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33658705

RESUMO

Incomplete recovery from episodes of acute kidney injury (AKI) can predispose patients to develop chronic kidney disease (CKD). Although hypoxia-inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia/ischemia, the role of HIF-1α in CKD progression following incomplete recovery from AKI is poorly understood. Here, we investigated this issue using moderate and severe ischemia/reperfusion injury (I/RI) mouse models. We found that the outcomes of AKI were highly associated with the time course of tubular HIF-1α expression. Sustained activation of HIF-1α, accompanied by the development of renal fibrotic lesions, was found in kidneys with severe AKI. The AKI to CKD progression was markedly ameliorated when PX-478 (a specific HIF-1α inhibitor, 5 mg· kg-1·d-1, i.p.) was administered starting on day 5 after severe I/RI for 10 consecutive days. Furthermore, we demonstrated that HIF-1α C-terminal transcriptional activation domain (C-TAD) transcriptionally stimulated KLF5, which promoted progression of CKD following severe AKI. The effect of HIF-1α C-TAD activation on promoting AKI to CKD progression was also confirmed in in vivo and in vitro studies. Moreover, we revealed that activation of HIF-1α C-TAD resulted in the loss of FIH-1, which was the key factor governing HIF-1α-driven AKI to CKD progression. Overexpression of FIH-1 inhibited HIF-1α C-TAD and prevented AKI to CKD progression. Thus, FIH-1-modulated HIF-1α C-TAD activation was the key mechanism of AKI to CKD progression by transcriptionally regulating KLF5 pathway. Our results provide new insights into the role of HIF-1α in AKI to CKD progression and also the potential therapeutic strategy for the prevention of renal diseases progression.


Assuntos
Injúria Renal Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Oxigenases de Função Mista/metabolismo , Insuficiência Renal Crônica/etiologia , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/patologia , Animais , Progressão da Doença , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Compostos de Mostarda/uso terapêutico , Fenilpropionatos/uso terapêutico , Domínios Proteicos , Insuficiência Renal Crônica/patologia , Regulação para Cima/fisiologia
8.
FASEB J ; 33(11): 12630-12643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451021

RESUMO

The discovery of hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor (PHI) has revolutionized the treatment strategy for renal anemia. However, the presence of multiple transcription targets of HIF raises safety concerns regarding HIF-PHI. Here, we explored the dose-dependent effect of MK-8617 (MK), a kind of HIF-PHI, on renal fibrosis. MK was administered by oral gavage to mice for 12 wk at doses of 1.5, 5, and 12.5 mg/kg. In vitro, the human proximal tubule epithelial cell line HK-2 was treated with increasing doses of MK administration. Transcriptome profiling was performed, and fibrogenesis was evaluated. The dose-dependent biphasic effects of MK on tubulointerstitial fibrosis (TIF) were observed in chronic kidney disease mice. Accordingly, high-dose MK treatment could significantly enhance TIF. Using RNA-sequencing, combined with in vivo and in vitro experiments, we found that Krüppel-like factor 5 (KLF5) expression level was significantly increased in the proximal tubular cells, which could be transcriptionally regulated by HIF-1α with high-dose MK treatment but not low-dose MK. Furthermore, our study clarified that HIF-1α-KLF5-TGF-ß1 signaling activation is the potential mechanism of high-dose MK-induced TIF, as knockdown of KLF5 reduced TIF in vivo. Collectively, our study demonstrates that high-dose MK treatment initiates TIF by activating HIF-1α-KLF5-TGF-ß1 signaling. These findings provide novel insights into TIF induction by high-dose MK (HIF-PHI), suggesting that the safety dosage window needs to be emphasized in future clinical applications.-Li, Z.-L., Lv, L.-L., Wang, B., Tang, T.-T., Feng, Y., Cao, J.-Y., Jiang, L.-Q., Sun, Y.-B., Liu, H., Zhang, X.-L., Ma, K.-L., Tang, R.-N., Liu, B.-C. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway.


Assuntos
Nefropatias/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Piridazinas/efeitos adversos , Pirimidinas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Animais , Fibrose , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/patologia , Masculino , Camundongos , Piridazinas/farmacologia , Pirimidinas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32458727

RESUMO

Waste-activated sludge (WAS) with trace organic pollutants, e.g., polycyclic aromatic hydrocarbons (PAHs), has become an environmental concern. Anaerobic technology is a feasible option for WAS treatment due to its advantages of low-energy consumption and high-energy recovery compared to aerobic technology, but it still has many shortcomings, such as low biogas production and a low organic pollutant removal efficiency. Thus, this study investigated the effects of cellulose on PAHs degradation and microbial community structure variation during anaerobic digestion of sewage sludge. Four semicontinuous experiments were set by adding cellulose to sewage sludge based on the volatile solids (VS) concentration. The proportions of sludge VS to cellulose VS were 1:0 (CK), 1:0.2, 1:0.5 and 1:1. The results showed the following: (1) The biodegradation of 2-ring, 3-ring and 4-ring PAHs was enhanced by cellulose addition, with total PAHs removal efficiencies of 14.82%, 20.75% and 19.35%, respectively. (2) The abundance of bacteria that could degrade PAHs, such as Chloroflexi, Bacteroidetes, Aminicenantes, Planctomycetes and Spirochaeta, was obviously increased by cellulose addition. (3) The abundance of Methanosaeta during sludge anaerobic digestion was apparently increased by cellulose addition. Methanobacterium and Methanolinea appeared after cellulose addition, while they were not observed in the blank experiment.


Assuntos
Celulose/farmacologia , Microbiota/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Esgotos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Anaerobiose , Biodegradação Ambiental , Biocombustíveis/análise , Celulose/metabolismo , Esgotos/química , Esgotos/microbiologia
10.
J Cell Mol Med ; 23(2): 731-739, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585399

RESUMO

Extracellular vesicles (EVs) are released to maintain cellular homeostasis as well as to mediate cell communication by spreading protective or injury signals to neighbour or remote cells. In kidney, increasing evidence support that EVs are signalling vesicles for different segments of tubules, intra-glomerular, glomerular-tubule and tubule-interstitial communication. EVs released by kidney resident and infiltrating cells can be isolated from urine and were found to be promising biomarkers for kidney disease, reflecting deterioration of renal function and histological change. We have here summarized the recent progress about the functional role of EVs in kidney disease as well as challenges and future directions involved.


Assuntos
Vesículas Extracelulares/metabolismo , Homeostase/genética , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Regeneração/genética , Apresentação de Antígeno , Transporte Biológico , Biomarcadores/metabolismo , Comunicação Celular/genética , Comunicação Celular/imunologia , Ácidos Nucleicos Livres/imunologia , Ácidos Nucleicos Livres/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Homeostase/imunologia , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Nefropatias/imunologia , Glomérulos Renais/imunologia , Túbulos Renais/imunologia , MicroRNAs/imunologia , MicroRNAs/metabolismo , Regeneração/imunologia , Transdução de Sinais
11.
J Cell Biochem ; 120(5): 7353-7362, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30525213

RESUMO

The mechanisms that underlie the profibrotic effect of interleukin (IL)-1ß are complicated and not fully understood. Recent evidence has suggested the involvement of the calcium-sensing receptor (CaSR) in tubular injury. Therefore, the current study aimed to investigate whether CaSR mediates IL-1ß-induced collagen expression in cultured mouse inner medullary collecting duct cells (mIMCD3) and to determine the possible downstream signaling effector. The results showed that IL-1ß significantly upregulated the expression of type I and III collagens in a concentration- and time-dependent manner. Moreover, CaSR was expressed in mIMCD3 cells, and its expression was increased by increasing the concentrations and times of IL-1ß treatment. Selective inhibitors (Calhex231 or NPS2143) or the siRNA of CaSR attenuated the enhanced expression of type I and III collagens. Furthermore, IL-1ß increased nuclear ß-catenin protein levels and decreased cytoplasmic ß-catenin expression in cells. In contrast, blockage of CaSR by the pharmacological antagonists or siRNA could partially attenuate such changes in the IL-1ß-induced nuclear translocation of ß-catenin. DKK1, an inhibitor of ß-catenin nuclear translocation, further inhibited the expression of type I and III collagens in cells treated with IL-1ß plus CaSR antagonist. In summary, these data demonstrated that IL-1ß-induced collagen I and III expressions in collecting duct cells might be partially mediated by CaSR and the downstream nuclear translocation of ß-catenin.

12.
J Cell Biochem ; 120(3): 4291-4300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260039

RESUMO

Artemisinin (Art) is isolated from Artemisia annua L. and known as the most effective antimalaria drugs. Previous studies demonstrated that it could exert an immune-regulatory effect on autoimmune diseases. In this study, we first investigated its potential role in tubulointerstitial inflammation and fibrosis in rats with 5/6 nephrectomy. Subtotal nephrectomized (SNx) rats were orally administered Art (100 mg·kg -1 ·d - 1) for 16 weeks. Blood and urine samples were collected for biochemical examination. Kidney tissues were collected for immunohistochemistry and Western blot analyses. Ang II-induced injury of the human kidney 2 (HK-2) cells was used for in vitro study. It was shown that Art could significantly attenuate the renal function decline in SNx rats compared with control. More importantly, Art treatment significantly reduced the tubulointerstitial inflammation and fibrosis, as demonstrated by the evaluation of renal pathology. Furthermore, Art inhibited the activation of NLRP3 inflammasome and NF-κB in the kidneys. In in vitro study, Art pretreatment could significantly prevent the activation of NLRP3 inflammasome and NF-κB in Ang II-treated HK-2 cells, while BAY11-7082 (an inhibitor of NF-κB) significantly inhibited Ang II-induced NLRP3 inflammasome activation. This study suggested that Art could provide renoprotective role by attenuating the tubulointerstitial inflammation and fibrosis in SNx rats by downregulating the NF-κB/NLRP3 signaling pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artemisininas/uso terapêutico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia/efeitos adversos , Nefrite Intersticial/tratamento farmacológico , Nefrite Intersticial/etiologia , Animais , Anti-Inflamatórios/farmacologia , Artemisia/química , Artemisininas/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Rim/citologia , Rim/patologia , Masculino , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Kidney Int ; 95(2): 388-404, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30551896

RESUMO

Hypoxia promotes tubulointerstitial inflammation in the kidney. Although hypoxia inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia, the exact mechanisms through which HIF-1α modulates the induction of tubulointerstitial inflammation are still largely unclear. We demonstrated tubulointerstitial inflammation and increased tubular HIF-1α expression in murine models of ischemia/reperfusion injury and unilateral ureteral obstruction. Increased expression of HIF-1α in tubular epithelial cells was associated with selective shedding of microRNA-23a (miRNA-23a)-enriched exosomes in vivo and systemic inhibition of miRNA-23a prior to ischemia/reperfusion injury attenuated tubulointerstitial inflammation. In vitro, uptake of miRNA-23a-enriched exosomes by macrophages triggered their reprogramming into a pro-inflammatory state via suppression of the ubiquitin editor A20. To confirm the effect of miRNA-23a-containing exosomes on tubulointerstitial inflammation, we exposed tubular epithelial cells to hypoxic conditions to promote the release of miRNA-23a-containing exosomes. Injection of these miRNA-23a-enriched exosomes into uninjured renal parenchyma resulted in increased inflammatory infiltration in vivo. Taken together, our studies demonstrate that the HIF-1α-dependent release of miRNA-23a-enriched exosomes from hypoxic tubular epithelial cells activates macrophages to promote tubulointerstitial inflammation. Blockade of exosome-mediated miRNA-23a transfer between tubular epithelial cells and macrophages may serve as a novel therapeutic approach to ameliorate tubulointerstitial inflammation.


Assuntos
Células Epiteliais/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Nefrite Intersticial/imunologia , Animais , Comunicação Celular/imunologia , Hipóxia Celular/genética , Hipóxia Celular/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Exossomos/imunologia , Exossomos/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Túbulos Renais/citologia , Túbulos Renais/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Nefrite Intersticial/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
14.
J Transl Med ; 17(1): 59, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819181

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD) in the world. Emerging evidence has shown that urinary mRNAs may serve as early diagnostic and prognostic biomarkers of DKD. In this article, we aimed to first establish a novel bioinformatics-based methodology for analyzing the "urinary kidney-specific mRNAs" and verify their potential clinical utility in DKD. METHODS: To select candidate mRNAs, a total of 127 Affymetrix microarray datasets of diabetic kidney tissues and other tissues from humans were compiled and analyzed using an integrative bioinformatics approach. Then, the urinary expression of candidate mRNAs in stage 1 study (n = 82) was verified, and the one with best performance moved on to stage 2 study (n = 80) for validation. To avoid potential detection bias, a one-step Taqman PCR assay was developed for quantification of the interested mRNA in stage 2 study. Lastly, the in situ expression of the selected mRNA was further confirmed using fluorescent in situ hybridization (FISH) assay and bioinformatics analysis. RESULTS: Our bioinformatics analysis identified sixteen mRNAs as candidates, of which urinary BBOX1 (uBBOX1) levels were significantly upregulated in the urine of patients with DKD. The expression of uBBOX1 was also increased in normoalbuminuric diabetes subjects, while remained unchanged in patients with urinary tract infection or bladder cancer. Besides, uBBOX1 levels correlated with glycemic control, albuminuria and urinary tubular injury marker levels. Similar results were obtained in stage 2 study. FISH assay further demonstrated that BBOX1 mRNA was predominantly located in renal tubular epithelial cells, while its expression in podocytes and urothelium was weak. Further bioinformatics analysis also suggested that tubular BBOX1 mRNA expression was quite stable in various types of kidney diseases. CONCLUSIONS: Our study provided a novel methodology to identify and analyze urinary kidney-specific mRNAs. uBBOX1 might serve as a promising biomarker of DKD. The performance of the selected urinary mRNAs in monitoring disease progression needs further validation.


Assuntos
Biologia Computacional , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/urina , gama-Butirobetaína Dioxigenase/genética , gama-Butirobetaína Dioxigenase/urina , Biomarcadores/urina , Bases de Dados Genéticas , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/urina , Reprodutibilidade dos Testes , Regulação para Cima/genética
15.
Am J Pathol ; 188(11): 2542-2552, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142333

RESUMO

IgA nephropathy (IgAN) features variable renal pathology and a heterogeneous clinical course. Our aim was to search noninvasive biomarkers from urinary exosomes for IgAN patients; membrane nephropathy and minimal change disease were included as other glomerulopathy controls. Transmission electron microscopy and nanoparticle tracking analysis confirmed the size and morphology characteristic of urinary exosomes. Exosome markers (Alix and CD63) as well as renal cell markers [aquaporin 2 (AQP2) and nephrin] were detected, which indicate the renal origin of urinary exosomes. Exosome excretion was increased markedly in IgAN patients compared with controls and correlated with levels of proteinuria and tubular injury. More important, urinary exosome excretion correlated with greater histologic activity (mesangial hypercellularity, crescents, and endocapillary hypercellularity). Profiling of the inflammation-related mRNA revealed that exosomal chemokine (C-C motif) ligand 2 (CCL2) was up-regulated in IgAN patients. In a validation study, CCL2 was exclusively highly expressed in IgAN patients compared with healthy controls as well as minimal change disease and membrane nephropathy patients. Also, a correlation between exosomal CCL2 and estimated glomerular filtration rate levels was found in IgAN. Exosomal CCL2 was correlated with tubulointerstitial inflammation and C3 deposition. High CCL2 levels at the time of renal biopsy were associated with subsequent deterioration in renal function. Thus, urinary exosomes and exosomal CCL2 mRNA are promising biomarkers reflecting active renal histologic injury and renal function deterioration in IgAN.


Assuntos
Biomarcadores/urina , Quimiocina CCL2/urina , Exossomos/metabolismo , Glomerulonefrite por IGA/complicações , Inflamação/diagnóstico , Nefrite Intersticial/diagnóstico , RNA Mensageiro/metabolismo , Adulto , Estudos de Casos e Controles , Quimiocina CCL2/genética , Exossomos/genética , Feminino , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/patologia , Humanos , Inflamação/etiologia , Inflamação/urina , Masculino , Nefrite Intersticial/etiologia , Nefrite Intersticial/urina , RNA Mensageiro/genética
16.
Adv Exp Med Biol ; 1165: 693-709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31399991

RESUMO

Extracellular vesicles (EVs) are small lipid-based membrane-bound vesicles secreted by most cells under both physiological and pathological conditions. A key function of EVs is to mediate cell-cell communication via transferring mRNAs, miRNAs and proteins from parent cells to recipient cells. These unique features of EVs have spurred a renewed interest in their utility for therapeutics. Given the growing evidence for EV-mediated renal diseases, strategies that could block the release or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic potential of EVs predominantly from stem cells in renal diseases will be outlined. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.


Assuntos
Vesículas Extracelulares , Nefropatias/terapia , Comunicação Celular , Fibrose , Humanos , MicroRNAs
17.
Adv Exp Med Biol ; 1165: 233-252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31399968

RESUMO

The renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including ischemia, proteinuria, toxins, and metabolic disorders. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and secrete varieties of bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the TECs also aggravate immune responses. Necroinflammation, an auto-amplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs also play an active role in progressive renal injury via mechanisms associated with the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives AKI and CKD is necessary for the development of therapeutics to halt the progression of CKD.


Assuntos
Células Epiteliais/patologia , Nefropatias/fisiopatologia , Túbulos Renais/citologia , Pontos de Checagem do Ciclo Celular , Fibrose , Humanos , Imunidade Inata , Rim/patologia
18.
J Cell Mol Med ; 22(2): 728-737, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29083099

RESUMO

Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from different cells. Recent studies have revealed that EVs may participate in renal tissue damage and regeneration through mediating inter-nephron communication. Thus, the potential use of EVs as therapeutic vector has gained considerable interest. In this review, we will discuss the basic characteristics of EVs and its role in nephron cellular communication. Then, the application of EVs as therapeutic vector based on its natural content or as carriers of drug, in acute and chronic kidney injury, was discussed. Finally, perspectives and challenges of EVs in therapy of kidney disease were described.


Assuntos
Vesículas Extracelulares/metabolismo , Nefropatias/terapia , Animais , Comunicação Celular , Humanos , Nefropatias/patologia , Modelos Biológicos , Terapia de Alvo Molecular , Néfrons/metabolismo
19.
Kidney Int ; 93(3): 568-579, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29361307

RESUMO

Renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including hypoxia, proteinuria, toxins, metabolic disorders, and senescence. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney diseases. In response to injury, tubular epithelial cells undergo changes and function as inflammatory and fibrogenic cells, with the consequent production of various bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the tubular epithelium also aggravate immune responses. Necroinflammation, an autoamplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, tubular cells also play an active role in progressive renal injury via emerging mechanisms associated with a partial epithelial-mesenchymal transition, cell-cycle arrest at both G1/S and G2/M check points, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives inflammation and fibrosis is necessary for the development of therapeutics to halt the progression of chronic kidney disease.


Assuntos
Injúria Renal Aguda/complicações , Células Epiteliais , Túbulos Renais , Insuficiência Renal Crônica/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Citocinas/imunologia , Citocinas/metabolismo , Progressão da Doença , Metabolismo Energético , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Imunidade Inata , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais
20.
J Biol Chem ; 290(29): 18018-18028, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26025362

RESUMO

Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease.


Assuntos
Albuminúria/imunologia , Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Túbulos Renais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Receptores de Superfície Celular/imunologia , Albumina Sérica/imunologia , Albuminúria/complicações , Albuminúria/patologia , Animais , Catepsina B/imunologia , Linhagem Celular , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Nefropatias/etiologia , Nefropatias/imunologia , Nefropatias/patologia , Túbulos Renais/imunologia , Lisossomos/imunologia , Lisossomos/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA