Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-28, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764407

RESUMO

D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.

2.
Bioorg Chem ; 145: 107189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350272

RESUMO

6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.


Assuntos
Aldose-Cetose Isomerases , Hexoses , Sorbose , Fucose , Racemases e Epimerases/genética , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/química , Açúcares , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética
3.
Entropy (Basel) ; 25(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673245

RESUMO

Due to the widespread presence of disturbances in practical engineering and widespread applications of high-order systems, this paper first pays attention to a class of high-order strict-feedback nonlinear systems subject to bounded disturbance and investigates the prescribed performance tracking control and anti-disturbance control problems. A novel composite control protocol using the technique of a disturbance observer-prescribed performance control-is designed using the back-stepping method. The disturbance observer is introduced for estimating and compensating for unknown disturbances in each step, and the prescribed performance specifications guarantee both transient and steady-state performance of the tracking error to improve the control performance and result in better disturbance rejection. Moreover, the technique of adding a power integrator is modified to tackle controller design problems for the high-order systems. The Lyapunov function method is utilized for rigorous stability analysis. It is revealed that while the control performance completely remains in the prescribed bound, all states in the closed-loop system are input-to-state stable, and the tracking error and the disturbances estimating error asymptotically converge to zero simultaneously. Then, the feasibility and effectiveness of the proposed control protocol are verified by a simulation result.

4.
Int J Biol Macromol ; 254(Pt 2): 127859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924916

RESUMO

D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.


Assuntos
Escherichia coli , Frutose , Escherichia coli/metabolismo , Frutose/química , Monossacarídeos/metabolismo , Sacarose/metabolismo
5.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890956

RESUMO

L-Arabinose isomerase (L-AI) has been commonly used as an efficient biocatalyst to produce D-tagatose via the isomerization of D-galactose. However, it remains a significant challenge to efficiently synthesize D-tagatose using the native (wild type) L-AI at an industrial scale. Hence, it is extremely urgent to redesign L-AI to improve its catalytic efficiency towards D-galactose, and herein a structure-based molecular modification of Lactobacillus plantarum CY6 L-AI (LpAI) was performed. Among the engineered LpAI, both F118M and F279I mutants showed an increased D-galactose isomerization activity. Particularly, the specific activity of double mutant F118M/F279I towards D-galactose was increased by 210.1% compared to that of the wild type LpAI (WT). Besides the catalytic activity, the substrate preference of F118M/F279I was also largely changed from L-arabinose to D-galactose. In the enzymatic production of D-tagatose, the yield and conversion ratio of F118M/F279I were increased by 81.2% and 79.6%, respectively, compared to that of WT. Furthermore, the D-tagatose production of whole cells expressing F118M/F279I displayed about 2-fold higher than that of WT cell. These results revealed that the designed site-directed mutagenesis is useful for improving the catalytic efficiency of LpAI towards D-galactose.

6.
Front Pediatr ; 11: 1052665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873631

RESUMO

Objective: Early identification and intervention for children with global developmental delay (GDD) can significantly improve their prognosis and reduce the possibility of developing intellectual disability in the future. This study aimed to explore the clinical effectiveness of a parent-implemented early intervention program (PIEIP) for GDD, providing a research basis for the extended application of this intervention strategy in the future. Methods: During the period between September 2019 and August 2020, children aged 3 to 6 months diagnosed with GDD were selected from each research center as the experimental group and the control group. For the experimental group, the PIEIP intervention was conducted for the parent-child pair. Mid-term and end-stage assessments were performed, respectively, at 12 and 24 months of age, and parenting stress surveys were completed. Results: The average age of the enrolled children was 4.56 ± 1.08 months for the experimental group (n = 153) and 4.50 ± 1.04 months for the control group (n = 153). The comparative analysis of the variation in the progress between the two groups by independent t-test showed that, after the experimental intervention, the developmental quotient (DQ) of locomotor, personal-social, and language, as well as the general quotient (GQ) of the Griffiths Mental Development Scale-Chinese (GDS-C), the children in the experimental group demonstrated higher progress than those in the control group (P < 0.05). Furthermore, there was a significant decrease in the mean standard score of dysfunctional interaction, difficult children and the total level of parental stress in the term test for the experimental groups (P < 0.001 for all). Conclusions: PIEIP intervention can significantly improve the developmental outcome and prognosis of children with GDD, especially in the areas of locomotor, personal-social, and language.

7.
Front Psychiatry ; 13: 879625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573353

RESUMO

Objective: Early screening contributes to the early detection of children with autism spectrum disorder (ASD). We conducted a longitudinal ASD screening study in a large community setting. The study was designed to investigate the diagnostic rate of ASD screening and determine the effectiveness of ASD screening model in a community-based sample. Methods: We enrolled children who attended 18- and 24-month well-child care visits in Shanghai Xuhui District. Modified Checklist for Autism in Toddlers, Revised with Follow-up (M-CHAT-R/F) and Binomial Observation Test (BOT) were selected as screening instruments. Screen-positive children were referred to a tertiary diagnostic center for comprehensive ASD diagnostic evaluation. Screen-negative children received well-child checkups and follow-up every 3-6 months until age three and were referred if they were suspected of having ASD. Results: A total of 11,190 toddlers were screened, and 36 screen-positive toddlers were diagnosed with ASD. The mean age at diagnosis for these children was 23.1 ± 4.55 months, diagnosed 20 months earlier than ASD children not screened. The diagnostic rate of ASD was 0.32% (95% CI: 0.23-0.45%) in this community-based sample. In addition, 12 screen-negative children were diagnosed with ASD during subsequent well-child visit and follow-up. The average diagnostic rate of ASD rose to 0.43% (95% CI: 0.32-0.57%) when toddlers were followed up to 3 years old. The positive predictive values (PPVs) of M-CHAT-R/F, M-CHAT-R high risk, and BOT for ASD were 0.31, 0.43, and 0.38 respectively. Conclusion: Our findings provide reliable data for estimating the rate of ASD detection and identifying the validity of community-based screening model. M-CHAT-R/F combined with BOT can be an effective tool for early detection of ASD. This community-based screening model is worth replicating.

8.
Foods ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430974

RESUMO

D-allulose is a natural rare sugar with important physiological properties that is used in food, health care items, and even the pharmaceutical industry. In the current study, a novel D-allulose 3-epimerase gene (Bp-DAE) from the probiotic strain Blautia produca was discovered for the production and characterization of an enzyme known as Bp-DAE that can epimerize D-fructose into D-allulose. Bp-DAE was strictly dependent on metals (Mn2+ and Co2+), and the addition of 1 mM of Mn2+ could enhance the half-life of Bp-DAE at 55 °C from 60 to 180 min. It exhibited optimal activity in a pH of 8 and 55 °C, and the Km values of Bp-DAE for the different substrates D-fructose and D-allulose were 235.7 and 150.7 mM, respectively. Bp-DAE was used for the transformation from 500 g/L D-fructose to 150 g/L D-allulose and exhibited a 30% of conversion yield during biotransformation. Furthermore, it was possible to employ the food-grade microbial species Bacillus subtilis for the production of D-allulose using a technique of whole-cell catalysis to circumvent the laborious process of enzyme purification and to obtain a more stable biocatalyst. This method also yields a 30% conversion yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA