Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078933

RESUMO

Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the ß-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.


Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Permeabilidade
2.
J Am Chem Soc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753624

RESUMO

The efficacy of photodynamic therapy is hindered by the hypoxic environment in tumors and limited light penetration depth. The singlet oxygen battery (SOB) has emerged as a promising solution, enabling oxygen- and light-independent 1O2 release. However, conventional SOB systems typically exhibit an "always-ON" 1O2 release, leading to potential 1O2 leakage before and after treatment. This not only compromises therapeutic outcomes but also raises substantial biosafety concerns. In this work, we introduce a programmable singlet oxygen battery, engineered to address all the issues discussed above. The concept is illustrated through the development of a tumor-microenvironment-responsive pyridone-pyridine switch, PyAce, which exists in two tautomeric forms: PyAce-0 (pyridine) and PyAce (pyridone) with different 1O2 storage half-lives. In its native state, PyAce remains in the pyridone form, capable of storing 1O2 (t1/2 = 18.5 h). Upon reaching the tumor microenvironment, PyAce is switched to the pyridine form, facilitating rapid and thorough 1O2 release (t1/2 = 16 min), followed by quenched 1O2 release post-therapy. This mechanism ensures suppressed 1O2 production pre- and post-therapy with selective and rapid 1O2 release at the tumor site, maximizing therapeutic efficacy while minimizing side effects. The achieved "OFF-ON-OFF" 1O2 therapy showed high spatiotemporal selectivity and was independent of the oxygen supply and light illumination.

3.
J Am Chem Soc ; 146(5): 3303-3314, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271212

RESUMO

The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.

4.
Nano Lett ; 23(22): 10374-10382, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37921703

RESUMO

The development of new antimicrobial agents to treat infections caused by Gram-negative bacteria is of paramount importance due to increased antibiotic resistance worldwide. Herein, we show that a water-soluble porphyrin-cored hyperbranched conjugated polyelectrolyte (PorHP) exhibits high photodynamic bactericidal activity against the Gram-negative bacteria tested, including a multidrug-resistant (MDR) pathogen, while demonstrating low cytotoxicity toward mammalian cells. Comprehensive analyses reveal that the antimicrobial activity of PorHP proceeds via a multimodal mechanism by effective bacterial capsule shedding, strong bacterial outer membrane binding, and singlet oxygen generation. Through this multimodal antimicrobial mechanism, PorHP displays significant performance for Gram-negative bacteria with >99.9% photodynamic killing efficacy. Overall, PorHP shows great potential as an antimicrobial agent in fighting the growing threat of Gram-negative bacteria.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Animais , Polieletrólitos/farmacologia , Anti-Infecciosos/farmacologia , Oxigênio Singlete , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mamíferos/metabolismo
5.
J Cell Mol Med ; 27(15): 2103-2111, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349905

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies worldwide. Portal vein tumour thrombus (PVTT) is considered one of most fearful complications of HCC and is strongly associated with a poor prognosis. Clarification of the mechanisms underlying the formation and development of PVTT is crucial for developing novel therapeutic strategies for HCC patients. Several studies have been made to uncover that tumour microenvironment, stem cells, abnormal gene expression and non-coding RNAs deregulation are associated with PVTT in patients with HCC in the last decade. However, the exact molecular mechanisms of PVTT in patients with HCC are still largely unknown. In the present review, we briefly summarized the molecular mechanisms underlying the formation and development of PVTT in HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Trombose , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Veia Porta/patologia , Trombose/patologia , Quimioembolização Terapêutica/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Microambiente Tumoral
6.
Small ; : e2307829, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044585

RESUMO

Photoacoustic imaging (PAI) and photothermal therapy (PTT) conducted over the near-infrared-II (NIR-II) window offer the benefits of noninvasiveness and deep tissue penetration. This necessitates the development of highly effective therapeutic agents with NIR-II photoresponsivity. Currently, the predominant organic diagnostic agents used in NIR-II PAI-guided PTT are conjugated polymeric materials. However, they exhibit a low in vivo clearance rate and long-term biotoxicity, limiting their clinical translation. In this study, an organic small molecule (CY-1234) with NIR-II absorption and nanoencapsulation (CY-1234 nanoparticles (NPs)) for PAI-guided PTT is reported. Extended π-conjugation is achieved in the molecule by introducing donor-acceptor units at both ends of the molecule. Consequently, CY-1234 exhibits a maximum absorption peak at 1234 nm in tetrahydrofuran. Nanoaggregates of CY-1234 are synthesized via F-127 encapsulation. They exhibit an excellent photothermal conversion efficiency of 76.01% upon NIR-II light irradiation. After intravenous injection of CY-1234 NPs into tumor-bearing mice, strong PA signals and excellent tumor ablation are observed under 1064 nm laser irradiation. This preliminary study can pave the way for the development of small-molecule organic nanoformulations for future clinical applications.

7.
Cancer Cell Int ; 23(1): 244, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848941

RESUMO

BACKGROUND: Primary hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA-binding protein that is aberrantly expressed in multiple tumors; however, its expression and biological function in HCC have not been reported. METHODS: KHDRBS3 knockdown and overexpression were performed using the lentiviral vector system to investigate the effects of KHDRBS3 on cell proliferation, apoptosis, chemoresistance, and glycolysis. Murine xenograft tumor models were constructed to study the role of KHDRBS3 on tumor growth in vivo. Furthermore, RNA-Pull Down and RNA immunoprecipitation were utilized to explore the interaction between KHDRBS3 and 14-3-3ζ, a phosphopeptide-binding molecule encoded by YWHAZ. RESULTS: KHDRBS3 was highly expressed in human HCC tissues and predicted the poor prognosis of patients with HCC. Knockdown of KHDRBS3 exhibited a carcinostatic effect in HCC and impeded proliferation and tumor growth, reduced glycolysis, enhanced cell sensitivity to doxorubicin, and induced apoptosis. On the contrary, forced expression of KHDRBS3 expedited the malignant biological behaviors of HCC cells. The expression of KHDRBS3 was positively correlated with the expression of 14-3-3ζ. RNA immunoprecipitation and RNA pull-down assays demonstrated that KHDRBS3 bound to YWHAZ. We further confirmed that 14-3-3ζ silencing significantly reversed the promotion of proliferation and glycolysis and the inhibition of apoptosis caused by KHDRBS3 overexpression. CONCLUSIONS: Our findings suggest that KHDRBS3 promotes glycolysis and malignant progression of HCC through upregulating 14-3-3ζ expression, providing a possible target for HCC therapy.

8.
BMC Surg ; 23(1): 5, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631791

RESUMO

OBJECTIVE: Postoperative pancreatic fistula (POPF) following distal pancreatectomy (DP) is a serious complication. In the present study, we aimed to identify the risk factors associated with clinically relevant postoperative pancreatic fistula (CR-POPF) and establish a nomogram model for predicting CR-POPF after DP. METHODS: In total, 115 patients who underwent DP at the General Hospital of Northern Theater Command between January 2005 and December 2020 were retrospectively studied. Univariate and multivariable logistic regression analyses were used to identify the independent risk factors associated with CR-POPF. Then, a nomogram was formulated based on the results of multivariable logistic regression analysis. The predictive performance was evaluated with receiver operating characteristic (ROC) curves. Decision curve and clinical impact curve analyses were used to validate the clinical application value of the model. RESULTS: The incidence of CR-POPF was 33.0% (38/115) in the present study. Multivariate logistic regression analysis identified the following variables as independent risk factors for POPF: body mass index (BMI) (OR 4.658, P = 0.004), preoperative albumin level (OR 7.934, P = 0.001), pancreatic thickness (OR 1.256, P = 0.003) and pancreatic texture (OR 3.143, P = 0.021). We created a nomogram by incorporating the above mentioned risk factors. The nomogram model showed better predictive value, with a concordance index of 0.842, sensitivity of 0.710, and specificity of 0.870 when compared to each risk factor. Decision curve and clinical impact curve analyses also indicated that the nomogram conferred a high clinical net benefit. CONCLUSION: Our nomogram could accurately and objectively predict the risk of postoperative CR-POPF in individuals who underwent DP, which could help clinicians with early identification of patients who might develop CR-POPF and early development of a suitable fistula mitigation strategy and postoperative management.


Assuntos
Pancreatectomia , Fístula Pancreática , Humanos , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Fístula Pancreática/diagnóstico , Fístula Pancreática/epidemiologia , Fístula Pancreática/etiologia , Estudos Retrospectivos , Pâncreas , Fatores de Risco , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Pancreaticoduodenectomia/efeitos adversos
9.
Angew Chem Int Ed Engl ; 62(46): e202307288, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37681940

RESUMO

The phototoxicity of photosensitizers (PSs) pre and post photodynamic therapy (PDT), and the hypoxic tumor microenvironment are two major problems limiting the application of PDT. While activatable PSs can successfully address the PS phototoxicity pre PDT, and type I PS can generate reactive oxygen species (ROS) effectively in hypoxic environment, very limited approaches are available for addressing the phototoxicity post PDT. There is virtually no solution available to address all these issues using a single design. Herein, we propose a proof-of-concept on-demand switchable photosensitizer with quenched photosensitization pre and post PDT, which could be activated only in tumor hypoxic environment. Particularly, a hypoxia-normoxia cycling responsive type I PS TPFN-AzoCF3 was designed to demonstrate the concept, which was further formulated into TPFN-AzoCF3 nanoparticles (NPs) using DSPE-PEG-2000 as the encapsulation matrix. The NPs could be activated only in hypoxic tumors to generate type I ROS during PDT treatment, but remain non-toxic in normal tissues, pre or after PDT, thus minimizing side effects and improving the therapeutic effect. With promising results in in vitro and in vivo tumor treatment, this presented strategy will pave the way for the design of more on-demand switchable photosensitizers with minimized side effects in the future.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Mol Pharm ; 18(3): 1444-1454, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538605

RESUMO

One of the characterizations of degenerative cartilage disease is the progressive loss of glycosaminoglycans (GAGs). The real-time imaging method to quantify GAGs is of great significance for the biochemical analysis of cartilage and diagnosis and therapeutic monitoring of cartilage degeneration in vivo. To this end, a cationic photoacoustic (PA) contrast agent, poly-l-lysine melanin nanoparticles (PLL-MNPs), specifically targeting anionic GAGs was developed in this study to investigate whether it can image cartilage degeneration. PLL-MNP assessed GAG depletion by Chondroitinase ABC in vitro rat cartilage and intact ex vivo mouse knee joint. A papain-induced cartilage degenerative mice model was used for in vivo photoacoustic imaging (PAI). Oral cartilage supplement glucosamine sulfate was intragastrically administered for mice cartilage repair and the therapeutic efficacy was monitored by PLL-MNP-enhanced PAI. Histologic findings were used to further confirm PAI results. In vitro results revealed that the PLL-MNPs not only had a high binding ability with GAGs but also sensitively monitored GAG content changes by PAI. The PA signal was gradually weakened along with the depletion of GAGs in cartilage. Particularly, PLL-MNPs depicted the cartilage structure and the distribution of GAGs was demonstrated in PA images in ex vivo joints. Compared with the normal joint, a lower signal intensity was detected from degenerative joint at 3 weeks after papain injection, suggesting an early diagnosis of cartilage lesion by PLL-MNPs. Importantly, this PA-enhanced nanoprobe was suitable for monitoring in vivo efficacy of glucosamine sulfate, which effectively blocked cartilage degradation in a high dose manner. In vivo imaging findings correlated well with histological examinations. PLL-MNPs provided sensitive visualization of cartilage degeneration and promising monitoring of therapeutic response in living subjects.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cátions/química , Glicosaminoglicanos/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Animais , Meios de Contraste/química , Glucosamina/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA