Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 5916-5926, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380514

RESUMO

Investigation of charge transfer needs analytical tools that could reveal this phenomenon, and enables understanding of its effect at the molecular level. Here, we show how the combination of using gold nanoclusters (AuNCs) and different spectroscopic techniques could be employed to investigate the charge transfer of thiolated molecules on gold nanoparticles (AuNP@Mol). It was found that the charge transfer effect in the thiolated molecule could be affected by AuNCs, evidenced by the amplification of surface-enhanced Raman scattering (SERS) signal of the molecule and changes in fluorescence lifetime of AuNCs. Density functional theory (DFT) calculations further revealed that AuNCs could amplify the charge transfer process at the molecular level by pumping electrons to the surface of AuNPs. Finite element method (FEM) simulations also showed that the electromagnetic enhancement mechanism along with chemical enhancement determines the SERS improvement in the thiolated molecule. This study provides a mechanistic insight into the investigation of charge transfer at the molecular level between organic and inorganic compounds, which is of great importance in designing new nanocomposite systems. Additionally, this work demonstrates the potential of SERS as a powerful analytical tool that could be used in nanochemistry, material science, energy, and biomedical fields.

2.
Analyst ; 149(6): 1774-1783, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38373007

RESUMO

Surface-enhanced Raman scattering (SERS) nanotags functionalized with lectins as the biological recognition element can be used to target the carbohydrate portion of carbohydrate-carrying molecules (glycoconjugates). An investigation of the optical stability of such functionalized SERS nanotags is an essential initial step before future application and quantification of surface glycan biomarkers on cells and extracellular vesicles. Herein, we report an innovative approach to evaluate the SERS stability of lectin-conjugated nanotags by investigating any possible interfering lectin-lectin interactions in a mixture of different lectin-conjugated SERS nanotags, as well as an assessment of lectin-glycan interaction by mixing wheat germ agglutinin (WGA)-conjugated SERS nanotags with different glycoproteins. No lectin cross-reactivity was found in the mixture of lectin-conjugated SERS nanotags, evidenced by the constant SERS intensity. Additionally, the results showed that the lectins conjugated to SERS nanotags retain their ability to interact with glycans, as evidenced by the changes in the nanotag color and extinction spectra. Their SERS intensity remained constant as supported by finite-element method (FEM) simulation results, demonstrating a high SERS stability and selectivity of lectin-conjugated nanotags towards multiplex applications.


Assuntos
Vesículas Extracelulares , Nanopartículas Metálicas , Lectinas , Biomarcadores , Análise Espectral Raman/métodos , Polissacarídeos
3.
Environ Res ; 256: 119229, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797465

RESUMO

There has been significant attention on the efficient degradation of pollutants in wastewater using metal-organic frameworks (MOFs) photocatalytic methods over the past decade. Herein, we examined the elimination of two different types of water-contaminating dyes, specifically cationic dye methylene blue (MB) and anionic dye methyl orange (MO), through the application of bimetal Cu/Ni-BTC@SiO2 MOF as high performance photocatalyst. The bimetal Cu/Ni-BTC@SiO2 photocatalyst was synthesized and characterized by XRD, FTIR, SEM, TEM, TGA, BET, DRS, and VSM techniques. The examination of the impact of different operational factors on the elimination of pollutants involved a comprehensive analysis of variables including the photocatalyst type, initial pollutant concentration, quantity of photocatalyst, and pH levels. The highest removal efficiency for MO and MB dyes by the photocatalyst was found to be 98 and 71%, respectively, within 60 min. In the fifth reaction stage, degradation efficiency for MO and MB was 76 and 56% respectively. Kinetic investigations demonstrated that, in the context of the uptake of MB and MO dyes, the interparticle diffusion, and pseudo-second-order models emerged as possessing the most robust correlation coefficients with the experimental data, registering values of 0.988 and 0.961, respectively. The examination of isotherms reveals that the isotherm models proposed by BET, and Anderson (V) demonstrate the highest level of conformity with the empirical data for the decomposition of MB and MO dyes, correspondingly. The TOC levels decreased significantly from 51 to 14 and 47 to 3 mg/L for MB and MO dyes, indicating the effective mineralization process using Cu/Ni-BTC@SiO2.


Assuntos
Cobre , Azul de Metileno , Dióxido de Silício , Poluentes Químicos da Água , Cobre/química , Cobre/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Dióxido de Silício/química , Azul de Metileno/química , Compostos Azo/química , Corantes/química , Níquel/química , Níquel/análise , Catálise , Cinética
4.
Langmuir ; 39(44): 15828-15836, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37901970

RESUMO

Nonspherical gold nanoparticles (GNPs) are increasingly used to enhance sensitivity and selectivity in analytical methods such as surface-enhanced Raman spectroscopy (SERS) for detecting trace biomarkers. However, there is limited research on the adsorption properties of aromatic thiols onto gold nanoparticles of different morphologies, where surface curvature varies significantly at the molecular level. In this study, we investigated the adsorption kinetics of 4-mercaptobenzoic acid, an aromatic molecule, on GNPs with different shapes using SERS. Our findings revealed significant differences in the adsorption behavior and binding site preferences of aromatic thiols on GNPs with distinct morphologies. While thiol molecules consider any surface site on nanospheres equally appealing, nanostars exhibit variations in curvature and surface energy, leading to initial binding with further repositioning from the tips of the nanostar after plasmon activation. To address these differences, we proposed a universal method to evaluate the quantity of tightly bound adsorbed molecules on GNPs independently of the particle size, shape, or concentration.

5.
Environ Res ; 239(Pt 2): 117292, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806480

RESUMO

Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Lipossomos/química , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Curcumina/farmacologia , Curcumina/química , Polissorbatos/química , Polissorbatos/uso terapêutico
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360714

RESUMO

In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Campos Magnéticos , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Feminino , Humanos , Letrozol/química , Letrozol/farmacocinética , Letrozol/farmacologia , Lipossomos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Proteínas de Neoplasias/metabolismo
7.
Phys Chem Chem Phys ; 22(10): 5673-5687, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32103209

RESUMO

Plasmonic nanostructures such as gold and silver could alter the intrinsic properties of fluorophores, photosensitizers or Raman reporters in their close vicinity. In this study, we have conducted systematic simulations to provide insight for the design of silver nanostructures with appropriate geometrical features for metal-enhanced fluorescence (MEF), metal-enhanced singlet oxygen generation (ME-SOG) and surface-enhanced Raman scattering (SERS) applications. The size-dependent optical properties and electric field enhancement of single and dimeric nanocubes were simulated. The extinction spectra of silver nanocubes were analysed by the multipole expansion method. Results show that a suitable size of Ag nanocubes for MEF and ME-SOG can be selected based on their maximum light scattering yield, the excitation and emission wavelengths of a particular fluorophore/photosensitizer and their maximum spectral overlap. Simulations of the 'hot-spot' or gap distance between two silver nanocubes with different configurations (i.e., face-to-face, edge-to-edge and corner-to-corner) were also performed. A direct correlation was found between the size and enhanced electric field around the Ag nanocubes simulated under 15 common Raman laser wavelengths from the UV to near-infrared region. The maximum SERS enhancement factor can be achieved by selecting the silver nanocubes with the right orientation, suitable edge length and gap distance that give the highest electric field at a specific Raman laser wavelength. It was also found that the higher order of silver nanostructures, e.g., trimer and tetramer, can lead to better enhancement effects. These simulation results can serve as generic guidelines to rationally design metal-enhancement systems including MEF, ME-SOG and SERS for different application needs without cumbersome optimization and tedious trial-and-error experimentation.

8.
J Environ Manage ; 223: 517-529, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958133

RESUMO

Presence of pigments and dyes in water bodies are growing tremendously and pose as toxic materials and have severe health effects on human and aquatic creatures. Treatments methods for removal of these toxic dyes along with other pollutants are growing in different dimensions, among which adsorption was found a cheaper and efficient method. In this study, the performance of polyaniline-based nano-adsorbent for removal of methyl orange (MO) dye from wastewater in a batch adsorption process is studied. Along with this to minimize the number of experiments and obtain optimal conditions, a multivariate predictive model based on response surface methodology (RSM) is developed. This is compared with data-driven modeling using the artificial neural network (ANN) which is integrated with differential evolution optimization (DEO) for prediction of the adsorption of MO. The interactive effects on MO removal efficiency with respect to independent process variables were investigated. The fit of the predictive model was found to good enough with R2 = 0.8635. The optimal ANN architecture with 5-12-1 topology resulted in higher R2 and lower RMSE of 0.9475 and 0.1294 respectively. Pearson's Chi-square measure which provides a good measurement scale for weighing the goodness of fit is found to be 0.005 and 0.038 for RSM and ANN-DEO respectively, and other statistical metrics evaluated in this study further confirms that the ANN-DEO is very superior over RSM for model predictions.


Assuntos
Compostos Azo/química , Redes Neurais de Computação , Adsorção , Compostos de Anilina , Compostos Azo/isolamento & purificação , Purificação da Água
9.
J Fluoresc ; 26(5): 1787-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27392974

RESUMO

In the present research, water soluble thioglycolic acid-capped CdS quantum dots (QDs) were synthesized by chemical precipitation method. The characteristics of prepared quantum dots were determined using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The obtained results revealed that CdS QDs have 5.60 nm crystallite size, hexagonal wurtzite structure and spherical morphology with less than 10 nm diameter. The photoluminescence (PL) spectroscopy was performed in order to study the effect of the presence of starch solutions. Blue emission peaks were positioned at 488 nm and its intensity quenched by increasing the concentration of starch solutions. The result of PL quenches in range of studied concentrations (0-100 ppm) was best described by Michaelis-Menten model. The amount of Michaelis constant (Km) for immobilized α-amylase in this system was about 68.08 ppm which showed a great tendency of enzyme to hydrolyze the starch as substrate. Finally, the limit of detection (LOD) was found to be about 2.24 ppm.


Assuntos
Compostos de Cádmio/química , Corantes Fluorescentes/química , Pontos Quânticos , Amido/análise , Sulfetos/química , Tioglicolatos/química , alfa-Amilases/química , Limite de Detecção , Espectrometria de Fluorescência
10.
Int J Biol Macromol ; 270(Pt 2): 132483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763252

RESUMO

Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Carbono , Quitosana , Leishmania infantum , Nanocompostos , Quitosana/química , Nanocompostos/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Carbono/química , Limite de Detecção , Corantes Fluorescentes/química , Humanos
11.
Int J Biol Macromol ; 258(Pt 2): 128957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154726

RESUMO

Targeting and treating intracellular pathogen infections has been long-standing challenge, particularly in light of the escalating prevalence of antimicrobial resistance. Herein, an optimum formulation of alginate (AL)-coated niosome-based carriers for delivery of herbal extract Gingerol (Gin) was developed to treat intracellular pathogen infections and cancer cells. We used Gin-Nio@AL as a model drug to assess its efficacy against Gram-negative/positive bacteria and breast cancer cell lines. Our investigation affirmed its heightened antibacterial and anticancer properties. The antibacterial activity of Gin-Nio@AL against intracellular Staphylococcus aureus (S. aureus) and pseudomonas aeruginosa (P. aeruginosa) was also tested. In the current study, the niosome nanoparticles containing herbal extract Gingerol were optimized regarding lipid content and Surfactant per Cholesterol molar ratio. The developed formulation provided potential advantages, such as smooth globular surface morphology, small diameter (240.68 nm), pH-sensitive sustained release, and high entrapment efficiency (94.85 %). The release rate of Gin from AL-coated niosomes (Gin-Nio@AL) in physiological and acidic pH is lower than uncoated nanoparticles (Gin-Nio). Besides, the release rate of Gin from niosomal formulations increased in acidic pH. The Gin-Nio@AL demonstrated good antimicrobial activity against S. aureus and P. aeruginosa, and compared to Gin-Nio, the MIC values decreased to 7.82 ± 0.00 and 1.95 ± 0.00 µg/mL, respectively. In addition, the time-kill assay results showed that the developed formulation significantly reduced the number of bacteria in both strains compared to other tested groups. The microtiter data and scanning electron microscope micrography showed that Gin-Nio@AL has a more significant inhibitory effect on biofilm formation than Gin-Nio and Gin. The cell cytotoxicity evaluation showed that Gin-Nio@AL reduced the survival rate of MDA-MB-231 cancer cells to 52.4 % and 45.2 % after 48 h and 72 h, respectively. The elimination of intracellular pathogens was investigated through a breast cancer cell infection in an in vitro model. Gin-Nio@AL exhibited an enhanced and sustained intracellular antibacterial activity against pathogens-infected breast cancer cells compared to other tested formulations. Overall, Gin-Nio@AL enables the triggered release and targeting of intra-extra cellular bacteria and cancer cells and provides a novel and promising candidate for treating intracellular pathogen infections and cancer cells.


Assuntos
Neoplasias da Mama , Catecóis , Álcoois Graxos , Nanopartículas , Humanos , Feminino , Lipossomos/química , Alginatos/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Nanopartículas/química
12.
ACS Appl Bio Mater ; 7(3): 1449-1468, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442406

RESUMO

This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 µm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.


Assuntos
Quitosana , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Lipossomos , Alginatos/farmacologia , Alginatos/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Impressão Tridimensional
13.
Nanoscale ; 15(5): 2087-2095, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36647920

RESUMO

Gold and/or silver nanostars are interesting anisotropic nanoparticles that have been used in surface-enhanced Raman scattering (SERS). In particular SERS nanotags consisting of gold nanostars and Raman reporter molecules have been widely utilised in biosensing and bioimaging. To improve the SERS activity of gold/silver nanostars, this paper details the development of a simple synthesis method that results in the formation of quasi-spherical SERS nanotags and larger highly anisotropic nanoparticles with a novel structure, which we have designated nanosupernova. The resulting SERS nanotags and nanosupernova contain gold/silver nanostars at their core, a self-assembled monolayer of Raman reporter molecules, and a final silver coating. The silver coating is the essential step responsible for the formation of the two types of particles, with incubation time, and type of Raman reporter molecule, the defining factor as to which forms. We discovered that the Raman reporter molecule, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), plays a crucial role in controlling the morphology of nanosupernova. We believe the larger highly anisotropic nanoparticles will open new applications in material sciences and in optical and electronic devices in the future.

14.
Chemosphere ; 342: 140176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714486

RESUMO

Desulfurization is an important process that not only affects the quality and performances of fuels but also is of great importance from environmental aspects. In this research, nitrogen-doped magnetic carbon dots nanocomposite was synthesized and characterized, and it's potential in adsorptive removal of thiophenes (i.e., thiophene, benzothiophene, and dibenzothiophene) from n-heptane (i.e., as model fuel) was investigated. After optimization of adsorption process, the removal efficiency was obtained above 95% for all of studied thiophenes. Besides that, it was concluded that using ultrasound during the adsorption process could enhance the maximum adsorption capacity. Langmuir model was able to appropriately describe the adsorption isotherm data, where the maximum equilibrium adsorption capacities for thiophene, benzothiophene and dibenzothiophene were obtained as 90.22, 96.51 and 100.38 mgg-1, respectively. The analysis of kinetic data also revealed that all thiophenes were being adsorbed following Pseudo-second-order model. To regenerate the adsorbent, the desorption process was also investigated using different solvents under different conditions, methanol was found as effective solvent for regeneration. The proposed adsorbent was used successfully for the removal of pollutants in a gasoline sample.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Carbono , Adsorção , Nitrogênio/análise , Tiofenos/análise , Solventes , Fenômenos Magnéticos , Cinética , Poluentes Químicos da Água/análise
15.
Int J Biol Macromol ; 253(Pt 2): 126808, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689301

RESUMO

Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Lipossomos/uso terapêutico , Gelatina , Alginatos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias da Mama/patologia , Concentração de Íons de Hidrogênio , Células MCF-7 , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos
16.
Int J Biol Macromol ; 242(Pt 1): 124697, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156313

RESUMO

Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.


Assuntos
Neoplasias da Mama , Paclitaxel , Feminino , Humanos , Paclitaxel/farmacologia , Lipossomos/uso terapêutico , Gelatina , Alginatos/uso terapêutico , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Impressão Tridimensional , Linhagem Celular Tumoral
17.
Nanomicro Lett ; 14(1): 123, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513555

RESUMO

The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.

18.
Nanoscale ; 14(41): 15242-15268, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218172

RESUMO

Cells and their derived extracellular vesicles (EVs) or exosomes contain unique molecular signatures that could be used as biomarkers for the detection of severe diseases such as cancer, as well as monitoring the treatment response. Revealing these molecular signatures requires developing non-invasive ultrasensitive tools to enable single molecule/cell-level detection using a small volume of sample with low signal-to-noise ratio background and multiplex capability. Surface-enhanced Raman scattering (SERS) can address the current limitations in studying cells and EVs through two main mechanisms: plasmon-enhanced electric field (the so-called electromagnetic mechanism (EM)), and chemical mechanism (CM). In this review, we first highlight these two SERS mechanisms and then discuss the nanomaterials that have been used to develop SERS biosensors based on each of the aforementioned mechanisms as well as the combination of these two mechanisms in order to take advantage of the synergic effect between electromagnetic enhancement and chemical enhancement. Then, we review the recent advances in designing label-aided and label-free SERS biosensors in both colloidal and planar systems to investigate the surface biomarkers on cancer cells and their derived EVs. Finally, we discuss perspectives of emerging SERS biosensors in future biomedical applications. We believe this review article will thus appeal to researchers in the field of nanobiotechnology including material sciences, biosensors, and biomedical fields.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Nanoestruturas , Análise Espectral Raman , Nanoestruturas/química , Biomarcadores
19.
ACS Appl Nano Mater ; 4(2): 911-948, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37556236

RESUMO

The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.

20.
Chemosphere ; 285: 131576, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34329134

RESUMO

Synthesis of value added products from wastes is of importance from different perspectives. Wood and paper industry produces tons of wastewaters that contains lignin. In this paper, we report a new approach, called solvent-shifting method, to synthesize lignin sulfonate nanoparticles (LS-NPs). The effective parameters on size of LS-NPs were carefully tuned and the size of LS-NPs was minimized by response surface methodology. The results suggested that LS-NPs with size of 53 nm can be synthesized at low lignin sulfonate concentration (0.28 g/mL), moderate surfactant concentration (0.32 g/mL) but relatively high anti-solvent content (92 mL of ethanol for 40 mL of the aqueous phase). The as-synthesized LS-NPs were characterized by different analytical techniques, where presence of various negatively charged functional groups on surface of LS-NPs was conformed. To investigate the potential of LS-NPs for adsorptive removal of pollutant molecules, basic red 2 (known as Safranin-O) was used as a model pollutant dye. The results suggested that the maximum removal occurs at alkaline pH, where there is strong electrostatic interactions between LS-NPs and cationic Safranin-O molecules. The adsorption capacity was 85.14 mg/gr, where the isotherm data was best described by Redlich-Peterson isotherm model. The kinetic data also revealed that the adsorption is very fast in the first 20 min, where there is three diffusional steps to complete the adsorption in 90 min. The results of this study could open up new window to the field of value-added products to synthesize waste-driven nanomaterials for environmental applications.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Adsorção , Cinética , Lignina , Solventes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA