Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(40): 24802-24812, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958664

RESUMO

The oligoadenylate synthetase (OAS)-RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Assuntos
Adenosina Desaminase/deficiência , Doenças Autoimunes do Sistema Nervoso/enzimologia , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Malformações do Sistema Nervoso/enzimologia , Fenol/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Morte Celular/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Oligorribonucleotídeos/metabolismo , Fenol/química , Proteínas de Ligação a RNA/genética
2.
PLoS Genet ; 9(3): e1003375, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555289

RESUMO

The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2(LRR-1) promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2(LRR-1) also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2(LRR-1) inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proliferação de Células , Proteínas Culina , Meiose/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Replicação do DNA , Células Germinativas/citologia , Células Germinativas/metabolismo , Mitose , Fosfotransferases/metabolismo , Complexo Sinaptonêmico/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(4): 1273-8, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288897

RESUMO

The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN), a large multiprotein complex that resembles the 19S lid of the 26S proteasome, plays a central role in the regulation of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic activity of the CSN complex, carried by subunit 5 (CSN5/Jab1), resides in the deneddylation of the CRLs that is the hydrolysis of the cullin-neural precursor cell expressed developmentally downregulated gene 8 (Nedd8)isopeptide bond. Whereas CSN-dependent CSN5 displays isopeptidase activity, it is intrinsically inactive in other physiologically relevant forms. Here we analyze the crystal structure of CSN5 in its catalytically inactive form to illuminate the molecular basis for its activation state. We show that CSN5 presents a catalytic domain that brings essential elements to understand its activity control. Although the CSN5 active site is catalytically competent and compatible with di-isopeptide binding, the Ins-1 segment obstructs access to its substrate-binding site, and structural rearrangements are necessary for the Nedd8-binding pocket formation. Detailed study of CSN5 by molecular dynamics unveils signs of flexibility and plasticity of the Ins-1 segment. These analyses led to the identification of a molecular trigger implicated in the active/inactive switch that is sufficient to impose on CSN5 an active isopeptidase state. We show that a single mutation in the Ins-1 segment restores biologically relevant deneddylase activity. This study presents detailed insights into CSN5 regulation. Additionally, a dynamic monomer-dimer equilibrium exists both in vitro and in vivo and may be functionally relevant.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Arginina/química , Complexo do Signalossomo COP9 , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína NEDD8 , Peptídeo Hidrolases/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitinas/metabolismo , Zinco/metabolismo
4.
Development ; 137(22): 3857-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978077

RESUMO

The molecular mechanisms that regulate cell cycle progression in a developmental context are poorly understood. Here, we show that the leucine-rich repeat protein LRR-1 promotes cell cycle progression during C. elegans development, both in the germ line and in the early embryo. Our results indicate that LRR-1 acts as a nuclear substrate-recognition subunit of a Cullin 2-RING E3 ligase complex (CRL2(LRR-1)), which ensures DNA replication integrity. LRR-1 contains a typical BC/Cul-2 box and binds CRL2 components in vitro and in vivo in a BC/Cul-2 box-dependent manner. Loss of lrr-1 function causes cell cycle arrest in the mitotic region of the germ line, resulting in sterility due to the depletion of germ cells. Inactivation of the DNA replication checkpoint signaling components ATL-1 and CHK-1 suppresses this cell cycle arrest and, remarkably, restores lrr-1 mutant fertility. Likewise, in the early embryo, loss of lrr-1 function induces CHK-1 phosphorylation and a severe cell cycle delay in P lineage division, causing embryonic lethality. Checkpoint activation is not constitutive in lrr-1 mutants but is induced by DNA damage, which may arise due to re-replication of some regions of the genome as evidenced by the accumulation of single-stranded DNA-replication protein A (ssDNA-RPA-1) nuclear foci and the increase in germ cell ploidy in lrr-1 and lrr-1; atl-1 double mutants, respectively. Collectively, these observations highlight a crucial function of the CRL2(LRR-1) complex in genome stability via maintenance of DNA replication integrity during C. elegans development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas Culina/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Ciclo Celular , Replicação do DNA , Instabilidade Genômica , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular
5.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287649

RESUMO

Aurora A is a serine/threonine kinase essential for mitotic entry and spindle assembly. Recent molecular studies have revealed the existence of multiple, distinct mechanisms of Aurora A activation, each occurring at specific subcellular locations, optimized for cellular context, and primed by signaling events including phosphorylation and oxidation.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Mitose , Processamento de Proteína Pós-Traducional , Regulação Alostérica , Animais , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oxirredução , Fosforilação , Ligação Proteica , Transdução de Sinais , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
6.
J Phys Chem Lett ; 11(17): 7090-7095, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787331

RESUMO

We propose a simple direct-sum method for the efficient evaluation of lattice sums in periodic solids. It consists of two main principles: (i) the creation of a supercell that has the topology of a Clifford torus, which is a flat, finite, and borderless manifold; (ii) the renormalization of the distance between two points on the Clifford torus by defining it as the Euclidean distance in the embedding space of the Clifford torus. Our approach does not require any integral transformations nor any renormalization of the charges. We illustrate our approach by applying it to the calculation of the Madelung constants of ionic crystals. We show that the convergence toward the system of infinite size is monotonic, which allows for a straightforward extrapolation of the Madelung constant. We are able to recover the Madelung constants with a remarkable accuracy, and at an almost negligible computational cost, i.e., a few seconds on a laptop computer.

7.
Elife ; 92020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030429

RESUMO

Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Laminina/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Genoma Helmíntico , Laminina/metabolismo , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
9.
Cell Rep ; 15(3): 510-518, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27068477

RESUMO

The conserved Bora protein is a Plk1 activator, essential for checkpoint recovery after DNA damage in human cells. Here, we show that Bora interacts with Cyclin B and is phosphorylated by Cyclin B/Cdk1 at several sites. The first 225 amino acids of Bora, which contain two Cyclin binding sites and three conserved phosphorylated residues, are sufficient to promote Plk1 phosphorylation by Aurora A in vitro. Mutating the Cyclin binding sites or the three conserved phosphorylation sites abrogates the ability of the N terminus of Bora to promote Plk1 activation. In human cells, Bora-carrying mutations of the three conserved phosphorylation sites cannot sustain mitotic entry after DNA damage. In C. elegans embryos, mutation of the three conserved phosphorylation sites in SPAT-1, the Bora ortholog, results in a severe mitotic entry delay. Our results reveal a crucial and conserved role of phosphorylation of the N terminus of Bora for Plk1 activation and mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/química , Sequência Conservada , Ciclina B/metabolismo , Dano ao DNA , Embrião não Mamífero/citologia , Ativação Enzimática , Células HeLa , Humanos , Mitose , Fosforilação , Quinase 1 Polo-Like
10.
Cell Cycle ; 14(15): 2394-8, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26038951

RESUMO

Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Humanos , Fosforilação , Ligação Proteica/genética , Estrutura Terciária de Proteína
11.
J Cell Biol ; 208(6): 661-9, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25753036

RESUMO

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho-SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A/metabolismo , Caenorhabditis elegans/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Humanos , Larva/citologia , Larva/enzimologia , Mitose , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Células Sf9 , Spodoptera
12.
Open Biol ; 3(8): 130083, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926048

RESUMO

Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino
13.
J Cell Biol ; 202(3): 431-9, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23918937

RESUMO

Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3(MEL-26)), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3(MEL-26)-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Katanina , Complexos Multiproteicos/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA