Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nanotechnology ; 33(23)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158341

RESUMO

Carbon-based materials have been studied for their antimicrobial properties. Previously, most antimicrobial studies are investigated with suspended nanoparticles in a liquid medium. Most works are often carried out with highly ordered pyrolytic graphite. These materials are expensive and are not viable for mass use on high-touch surfaces. Additionally, highly antimicrobial silver nanoparticles are often incorporated onto substrates by chemical reduction. At times, harmful chemicals are used. In this work, low-cost graphite pencils are mechanically exfoliated and transferred onto Si substrates. The sparsely-covered graphite flakes are treated by either plasma O2or UV irradiation. Subsequently, Ag is photo reduced in the presence of UV onto selected graphite flake samples. It is found that graphite flake surface topography and defects are dependent on the treatment process. High surface roughness and (defects density,ID/IG) are induced by plasma O2follows by UV and pristine graphite flake as follows: 6.45 nm (0.62), 4.96 nm (0.5), 3.79 nm (0.47). Antimicrobial tests withE. colireveal high killing efficiency by photoreduced Ag-on-graphite flake. The reversible effect of Ag leaching can be compensated by repeating the photoreduction process. This work proposes that UV treatment is a promising technique over that of plasma O2in view that the latter treated surface could repel bacteria resulting in lower bacteria-killing efficiency.

2.
Nanotechnology ; 31(28): 285701, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32244242

RESUMO

As a novel class of two-dimensional materials, MXene has provoked tremendous progress for various applications in functional devices. Here, we pioneer a preliminary understanding on the field emission behavior of MXene for the first time. Ti3C2 paper is fabricated by using facile filtration method, and multiple vertical sheets appear on the surface of MXene paper with high electrical conductivity (2.93 × 105 S m-1) and low work function (3.77 eV). The field electron emission performance and electric field distribution on MXene emitters are measured and simulated under planar and standing conditions. Both emitter conditions exhibit stable, uniform electron emission pattern, and the standing emitter achieves high emission current density of 59 mA cm-2 under 7.5 V µm-1. This work demonstrates the feasibility of MXene as cold electron source, establishing a preliminary foundation for its applications in field emission-based devices.

3.
Small ; : e1801348, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971912

RESUMO

Graphene nanogap systems are promising research tools for molecular electronics, memories, and nanodevices. Here, a way to control the propagation of nanogaps in monolayer graphene during electroburning is demonstrated. A tightly focused femtosecond laser beam is used to induce defects in graphene according to selected patterns. It is shown that, contrary to the pristine graphene devices where nanogap position and shape are uncontrolled, the nanogaps in prepatterned devices propagate along the defect line created by the femtosecond laser. Using passive voltage contrast combined with atomic force microscopy, the reproducibility of the process with a 92% success rate over 26 devices is confirmed. Coupling in situ infrared thermography and finite element analysis yields a real-time estimation of the device temperature during electrical loading. The controlled nanogap formation occurs well below 50 °C when the defect density is high enough. In the perspective of graphene-based circuit fabrication, the availability of a cold electroburning process is critical to preserve the full circuit from thermal damage.

4.
Nanotechnology ; 29(1): 015202, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29083996

RESUMO

Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V µm-1 to achieve FE current density of 22 mA cm-2; whereas SiO2-wrapped field emitter requires 8.5 V µm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

5.
Nanotechnology ; 29(7): 075205, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29239308

RESUMO

It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 µm diameter and 2 µm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

6.
Nano Lett ; 15(12): 8155-61, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26565932

RESUMO

The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer) exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin-orbit coupling (SOC) and interlayer coupling in different structural symmetries. Such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS2 blocks.

7.
Nat Mater ; 13(12): 1135-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262094

RESUMO

Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature. Vertically stacked bilayers with WS2 epitaxially grown on top of the MoS2 monolayer are formed with preferred stacking order at high temperature. A strong interlayer excitonic transition is observed due to the type II band alignment and to the clean interface of these bilayers. Vapour growth at low temperature, on the other hand, leads to lateral epitaxy of WS2 on MoS2 edges, creating seamless and atomically sharp in-plane heterostructures that generate strong localized photoluminescence enhancement and intrinsic p-n junctions. The fabrication of heterostructures from monolayers, using simple and scalable growth, paves the way for the creation of unprecedented two-dimensional materials with exciting properties.

8.
Nat Commun ; 15(1): 745, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272914

RESUMO

The electrical control of the non-trivial topology in Weyl antiferromagnets is of great interest for the development of next-generation spintronic devices. Recent studies suggest that the spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low. Here, we demonstrate the effective manipulation of antiferromagnetic order in the Weyl semimetal Mn3Sn using orbital torques originating from either metal Mn or oxide CuOx. Although Mn3Sn can convert orbital current to spin current on its own, we find that inserting a heavy metal layer, such as Pt, of appropriate thickness can effectively reduce the critical switching current density by one order of magnitude. In addition, we show that the memristor-like switching behaviour of Mn3Sn can mimic the potentiation and depression processes of a synapse with high linearity-which may be beneficial for constructing accurate artificial neural networks. Our work paves a way for manipulating the topological antiferromagnetic order and may inspire more high-performance antiferromagnetic functional devices.

9.
Nanotechnology ; 24(19): 195202, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23579584

RESUMO

The mechanisms of p-to-n conversion and vice versa in unipolar graphene field-effect transistors (GFETs) were systematically studied using Raman spectroscopy. Unipolar p-type GFETs are achieved by decorating the graphene surface with a thin layer of titanium (Ti) film, resulting in a Raman D peak. The D peak is observed to recover by annealing the GFET in nitrogen ambient followed by silicon nitride (Si3N4) deposition, suggesting that the Ti adatoms are being partially removed. Furthermore, unipolar n-type GFETs are obtained after the passivation on p-type GFETs. The threshold voltage of the n-type GFET is dependent on the thickness of the Si3N4 layer, which increases as the thickness decreases. A comparison between the Si3N4 and SiO2 passivation layers shows that SiO2 passivation does not convert the GFET into n-type graphene, which identifies the significance of ammonia (NH3) for the formation of the n-type GFETs. This study provides an insight into the mechanism of controlling the conduction behavior of unipolar GFETs.

10.
Nat Commun ; 14(1): 8470, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123543

RESUMO

Engineering piezo/ferroelectricity in two-dimensional materials holds significant implications for advancing the manufacture of state-of-the-art multifunctional materials. The inborn nonstoichiometric propensity of two-dimensional transition metal dichalcogenides provides a spiffy ready-available solution for breaking inversion centrosymmetry, thereby conducing to circumvent size effect challenges in conventional perovskite oxide ferroelectrics. Here, we show the extendable and ubiquitous piezo/ferroelectricity within nonstoichiometric two-dimensional transition metal dichalcogenides that are predominantly centrosymmetric during standard stoichiometric cases. The emerged piezo/ferroelectric traits are aroused from the sliding of van der Waals layers and displacement of interlayer metal atoms triggered by the Frankel defects of heterogeneous interlayer native metal atom intercalation. We demonstrate two-dimensional chromium selenides nanogenerator and iron tellurides ferroelectric multilevel memristors as two representative applications. This innovative approach to engineering piezo/ferroelectricity in ultrathin transition metal dichalcogenides may provide a potential avenue to consolidate piezo/ferroelectricity with featured two-dimensional materials to fabricate multifunctional materials and distinguished multiferroic.

11.
Adv Mater ; 35(46): e2306330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737448

RESUMO

Due to its inversion-broken triple helix structure and the nature of Weyl semiconductor, 2D Tellurene (2D Te) is promising to possess a strong nonlinear optical response in the infrared region, which is rarely reported in 2D materials. Here, a giant nonlinear infrared response induced by large Berry curvature dipole (BCD) is demonstrated in the Weyl semiconductor 2D Te. Ultrahigh second-harmonic generation response is acquired from 2D Te with a large second-order nonlinear optical susceptibility (χ(2) ), which is up to 23.3 times higher than that of monolayer MoS2 in the range of 700-1500 nm. Notably, distinct from other 2D nonlinear semiconductors, χ(2) of 2D Te increases extraordinarily with increasing wavelength and reaches up to 5.58 nm V-1 at ≈2300 nm, which is the best infrared performance among the reported 2D nonlinear materials. Large χ(2) of 2D Te also enables the high-intensity sum-frequency generation with an ultralow continuous-wave (CW) pump power. Theoretical calculations reveal that the exceptional performance is attributed to the presence of large BCD located at the Weyl points of 2D Te. These results unravel a new linkage between Weyl semiconductor and strong optical nonlinear responses, rendering 2D Te a competitive candidate for highly efficient nonlinear 2D semiconductors in the infrared region.

12.
J Nanosci Nanotechnol ; 12(1): 707-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22524044

RESUMO

Carbon nanowires are fabricated by the Langmuir Blodgett (LB) method via the top down approach on amorphous carbon. Thick a-C films (500 nm to 1 microm) have been successfully deposited after the treatment on silicon. The anisotropic etching of carbon using reactive ion etching (RIE) has been verified giving near vertical sidewalls. The LB method for depositing monolayer requires a hydrophilic surface. Plasma treatment is being performed on the silicon oxide hard mask to reduce the surface energy thereby making the surface from hydrophobic to hydrophilic. PS balls which are being deposited by LB method have one disadvantage which is the low adhesion of the PS ball to the silicon oxide surface. This adhesion is being improved by subjecting the PS ball to annealing which changes the shape and increase the contact area between the PS balls and the silicon oxide surface. As carbon and PS ball is vulnerable to oxygen plasma, a modified recipe of CF4:Ar was being used to etch the silicon oxide hard mask. There is almost little chemical reaction of the CF4 on carbon and PS ball. Carbon nanowires were successfully fabricated using polystyrene (PS) balls of diameter 450 nm. Through a series of steps, carbon nanowire of 500 nm in length and diameter approximately 250 nm can be produced.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Micromachines (Basel) ; 13(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056285

RESUMO

Graphitisation of structural characteristics and improvement in electrical conductivity was reported onto waste carbon powder through femtosecond laser annealing. Raman spectroscopy on the carbon powder pre- and post-annealing showed a shift from amorphous-like carbon to graphitic-like carbon, which can be explained by the three-stage model. Electrical I-V probing of the samples revealed an increase in conductivity by up to 90%. An increase in incident laser power was found to be correlated to an increase in conductivity. An average incident laser power of 0.104 W or less showed little to no change in electrical characteristics, while an average incident laser power of greater than 1.626 W had a destructive effect on the carbon powder, shown through the reduction in powder. The most significant improvement in electrical conductivity has been observed at laser powers ranging from 0.526 to 1.286 W. To conclude, the graphitisation of waste carbon powder is possible using post-process femtosecond laser annealing to alter its electrical conductivity for future applications.

14.
Micromachines (Basel) ; 13(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35334781

RESUMO

Antimonene (Sb) is a novel kind of two-dimensional (2D) material that is predicted to be promising for various applications, such as water splitting and semiconductor devices. Several methods have been reported to prepare Sb nanoflakes/nanofilms; however, it is still relatively difficult to prepare Sb nanofilms. In this work, a method of low-power magnetron sputtering deposition was used for the preparation of Sb nanofilms with lateral dimensions on the centimeter scale and controllable film thickness. It was found that the control of the deposition temperature is important for the final crystalline structure of the nanofilms. Furthermore, the application of the nanofilms as a catalyst for water splitting (hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)) was demonstrated.

15.
Nanotechnology ; 22(29): 295712, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21693800

RESUMO

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Nanotubos de Carbono/química , Fator de Crescimento Transformador beta/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Nanotubos de Carbono/ultraestrutura , Proteínas Recombinantes/farmacologia , Silício/química , Molhabilidade/efeitos dos fármacos
16.
J Nanosci Nanotechnol ; 11(12): 10539-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408943

RESUMO

Large-area Si nanowire arrays have been fabricated on phosphorus doped Si surface by a facile silver-catalyzed chemical etching process. The solar cell incorporated with Si nanowire arrays shows a power conversion efficiency of 6.69% with an open circuit voltage of 558 mV and a short circuit current density of 25.13 mA/cm2 under AM 1.5 G illumination without using any extra antireflection layer and surface passivation technique. The high power conversion efficiency of Si nanowires based-solar cell is attributed to the low reflectance loss of Si nanowire arrays for incident sunlight. Optimization of electrical contact and phosphorus diffusion process will be critical to improve the performance of Si nanowires-based solar cell in the future.

17.
ACS Appl Mater Interfaces ; 13(47): 56638-56644, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786928

RESUMO

Magnetic tunnel junctions (MTJs) with tunable tunneling magnetoresistances (TMR) have already been proven to have great potential for spintronics. Especially, when ferroelectric materials are used as insulating barriers, more novel functions of MTJs can be realized due to interface magnetoelectric coupling. Here, we demonstrate a very large ferroelectric modulation of TMR (as high as 570% in low-resistance state) in the ferroelectric/magnetic La0.5Sr0.5MnO3/BaTiO3 (LSMO/BTO) junctions and find robust interfacial electronic and magnetic reconstructions via ferroelectric polarization switching. Through electrical, magnetic, and optical measurements combined with X-ray absorption and magnetic circular dichroism, we reveal that the interfacial electronic and magnetic (ferromagnetic/antiferromagnetic phase transition) reconstructions originate from strong electromagnetic coupling between BTO and LSMO at the interface and are driven by the modulation of hole/electron doping at the interface of LSMO/BTO through ferroelectric polarization switching. As a result, the ferroelectrically controlled interface barrier height and width and spin filter effect enable a giant electrical modulation of TMR. Our results shed new light on the intrinsic mechanisms governing magnetoelectric coupling and offering a new route to enhance magnetoelectric coupling for spin control in spintronic devices.

18.
Micromachines (Basel) ; 12(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477456

RESUMO

Carbon nanotubes (CNTs) have, over the years, been used in research as a promising material in electronics as a thermal interface material and as interconnects amongst other applications. However, there exist several issues preventing the widespread integration of CNTs onto device applications, e.g., high growth temperature and interfacial resistance. To overcome these issues, a complementary metal oxide semiconductor (CMOS)-compatible CNT array transfer method that electrically connects the CNT arrays to target device substrates was developed. The method separates the CNT growth and preparation steps from the target substrate. Utilizing an alignment tool with the capabilities of thermocompression enables a highly accurate transfer of CNT arrays onto designated areas with desired patterns. With this transfer process as a starting point, improvement pointers are also discussed in this paper to further improve the quality of the transferred CNTs.

19.
Nat Commun ; 11(1): 57, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896753

RESUMO

Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm-2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: -25 mV and Tafel slope: 54 mV dec-1), thus indicating an intrinsically high activation of the TMD GBs.

20.
Adv Mater ; 31(1): e1804945, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417479

RESUMO

2D materials are considered as intriguing building blocks for next-generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)-grown 2D Bi2 O2 Se transferred onto silicon substrates with a noncorrosive transfer method. The as-transferred Bi2 O2 Se preserves high quality in contrast to the serious quality degradation in hydrofluoric-acid-assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W-1 , a photoconductive gain of more than 104 , and a time response in the order of sub-millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD-grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D-material-based optoelectronic applications as well as integrating with state-of-the-art silicon photonic and electronic technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA