Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Med Robot Bionics ; 6(1): 135-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304756

RESUMO

Subretinal injection methods and other procedures for treating retinal conditions and diseases (many considered incurable) have been limited in scope due to limited human motor control. This study demonstrates the next generation, cooperatively controlled Steady-Hand Eye Robot (SHER 3.0), a precise and intuitive-to-use robotic platform achieving clinical standards for targeting accuracy and resolution for subretinal injections. The system design and basic kinematics are reported and a deflection model for the incorporated delta stage and validation experiments are presented. This model optimizes the delta stage parameters, maximizing the global conditioning index and minimizing torsional compliance. Five tests measuring accuracy, repeatability, and deflection show the optimized stage design achieves a tip accuracy of < 30 µm, tip repeatability of 9.3 µm and 0.02°, and deflections between 20-350 µm/N. Future work will use updated control models to refine tip positioning outcomes and will be tested on in vivo animal models.

2.
Otolaryngol Head Neck Surg ; 171(1): 188-196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488231

RESUMO

OBJECTIVE: Use microscopic video-based tracking of laryngeal surgical instruments to investigate the effect of robot assistance on instrument tremor. STUDY DESIGN: Experimental trial. SETTING: Tertiary Academic Medical Center. METHODS: In this randomized cross-over trial, 36 videos were recorded from 6 surgeons performing left and right cordectomies on cadaveric pig larynges. These recordings captured 3 distinct conditions: without robotic assistance, with robot-assisted scissors, and with robot-assisted graspers. To assess tool tremor, we employed computer vision-based algorithms for tracking surgical tools. Absolute tremor bandpower and normalized path length were utilized as quantitative measures. Wilcoxon rank sum exact tests were employed for statistical analyses and comparisons between trials. Additionally, surveys were administered to assess the perceived ease of use of the robotic system. RESULTS: Absolute tremor bandpower showed a significant decrease when using robot-assisted instruments compared to freehand instruments (P = .012). Normalized path length significantly decreased with robot-assisted compared to freehand trials (P = .001). For the scissors, robot-assisted trials resulted in a significant decrease in absolute tremor bandpower (P = .002) and normalized path length (P < .001). For the graspers, there was no significant difference in absolute tremor bandpower (P = .4), but there was a significantly lower normalized path length in the robot-assisted trials (P = .03). CONCLUSION: This study demonstrated that computer-vision-based approaches can be used to assess tool motion in simulated microlaryngeal procedures. The results suggest that robot assistance is capable of reducing instrument tremor.


Assuntos
Microcirurgia , Procedimentos Cirúrgicos Robóticos , Suínos , Animais , Procedimentos Cirúrgicos Robóticos/métodos , Microcirurgia/métodos , Tremor/cirurgia , Estudos Cross-Over , Gravação em Vídeo , Cadáver , Humanos
3.
Int J Comput Assist Radiol Surg ; 19(7): 1259-1266, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775904

RESUMO

PURPOSE: Monocular SLAM algorithms are the key enabling technology for image-based surgical navigation systems for endoscopic procedures. Due to the visual feature scarcity and unique lighting conditions encountered in endoscopy, classical SLAM approaches perform inconsistently. Many of the recent approaches to endoscopic SLAM rely on deep learning models. They show promising results when optimized on singular domains such as arthroscopy, sinus endoscopy, colonoscopy or laparoscopy, but are limited by an inability to generalize to different domains without retraining. METHODS: To address this generality issue, we propose OneSLAM a monocular SLAM algorithm for surgical endoscopy that works out of the box for several endoscopic domains, including sinus endoscopy, colonoscopy, arthroscopy and laparoscopy. Our pipeline builds upon robust tracking any point (TAP) foundation models to reliably track sparse correspondences across multiple frames and runs local bundle adjustment to jointly optimize camera poses and a sparse 3D reconstruction of the anatomy. RESULTS: We compare the performance of our method against three strong baselines previously proposed for monocular SLAM in endoscopy and general scenes. OneSLAM presents better or comparable performance over existing approaches targeted to that specific data in all four tested domains, generalizing across domains without the need for retraining. CONCLUSION: OneSLAM benefits from the convincing performance of TAP foundation models but generalizes to endoscopic sequences of different anatomies all while demonstrating better or comparable performance over domain-specific SLAM approaches. Future research on global loop closure will investigate how to reliably detect loops in endoscopic scenes to reduce accumulated drift and enhance long-term navigation capabilities.


Assuntos
Algoritmos , Endoscopia , Humanos , Endoscopia/métodos , Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
4.
Int J Comput Assist Radiol Surg ; 19(6): 1213-1222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642297

RESUMO

PURPOSE: Teamwork in surgery depends on a shared mental model of success, i.e., a common understanding of objectives in the operating room. A shared model leads to increased engagement among team members and is associated with fewer complications and overall better outcomes for patients. However, clinical training typically focuses on role-specific skills, leaving individuals to acquire a shared model indirectly through on-the-job experience. METHODS: We investigate whether virtual reality (VR) cross-training, i.elet@tokeneonedotexposure to other roles, can enhance a shared mental model for non-surgeons more directly. Our study focuses on X-ray guided pelvic trauma surgery, a procedure where successful communication depends on the shared model between the surgeon and a C-arm technologist. We present a VR environment supporting both roles and evaluate a cross-training curriculum in which non-surgeons swap roles with the surgeon. RESULTS: Exposure to the surgical task resulted in higher engagement with the C-arm technologist role in VR, as measured by the mental demand and effort expended by participants ( p < 0.001 ). It also has a significant effect on non-surgeon's mental model of the overall task; novice participants' estimation of the mental demand and effort required for the surgeon's task increases after training, while their perception of overall performance decreases ( p < 0.05 ), indicating a gap in understanding based solely on observation. This phenomenon was also present for a professional C-arm technologist. CONCLUSION: Until now, VR applications for clinical training have focused on virtualizing existing curricula. We demonstrate how novel approaches which are not possible outside of a virtual environment, such as role swapping, may enhance the shared mental model of surgical teams by contextualizing each individual's role within the overall task in a time- and cost-efficient manner. As workflows grow increasingly sophisticated, we see VR curricula as being able to directly foster a shared model for success, ultimately benefiting patient outcomes through more effective teamwork in surgery.


Assuntos
Equipe de Assistência ao Paciente , Realidade Virtual , Humanos , Feminino , Masculino , Currículo , Competência Clínica , Adulto , Cirurgia Assistida por Computador/métodos , Cirurgia Assistida por Computador/educação , Cirurgiões/educação , Cirurgiões/psicologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38922721

RESUMO

OBJECTIVE: Segmentation, the partitioning of patient imaging into multiple, labeled segments, has several potential clinical benefits but when performed manually is tedious and resource intensive. Automated deep learning (DL)-based segmentation methods can streamline the process. The objective of this study was to evaluate a label-efficient DL pipeline that requires only a small number of annotated scans for semantic segmentation of sinonasal structures in CT scans. STUDY DESIGN: Retrospective cohort study. SETTING: Academic institution. METHODS: Forty CT scans were used in this study including 16 scans in which the nasal septum (NS), inferior turbinate (IT), maxillary sinus (MS), and optic nerve (ON) were manually annotated using an open-source software. A label-efficient DL framework was used to train jointly on a few manually labeled scans and the remaining unlabeled scans. Quantitative analysis was then performed to obtain the number of annotated scans needed to achieve submillimeter average surface distances (ASDs). RESULTS: Our findings reveal that merely four labeled scans are necessary to achieve median submillimeter ASDs for large sinonasal structures-NS (0.96 mm), IT (0.74 mm), and MS (0.43 mm), whereas eight scans are required for smaller structures-ON (0.80 mm). CONCLUSION: We have evaluated a label-efficient pipeline for segmentation of sinonasal structures. Empirical results demonstrate that automated DL methods can achieve submillimeter accuracy using a small number of labeled CT scans. Our pipeline has the potential to improve pre-operative planning workflows, robotic- and image-guidance navigation systems, computer-assisted diagnosis, and the construction of statistical shape models to quantify population variations. LEVEL OF EVIDENCE: N/A.

6.
Int J Comput Assist Radiol Surg ; 19(7): 1359-1366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753135

RESUMO

PURPOSE: Preoperative imaging plays a pivotal role in sinus surgery where CTs offer patient-specific insights of complex anatomy, enabling real-time intraoperative navigation to complement endoscopy imaging. However, surgery elicits anatomical changes not represented in the preoperative model, generating an inaccurate basis for navigation during surgery progression. METHODS: We propose a first vision-based approach to update the preoperative 3D anatomical model leveraging intraoperative endoscopic video for navigated sinus surgery where relative camera poses are known. We rely on comparisons of intraoperative monocular depth estimates and preoperative depth renders to identify modified regions. The new depths are integrated in these regions through volumetric fusion in a truncated signed distance function representation to generate an intraoperative 3D model that reflects tissue manipulation RESULTS: We quantitatively evaluate our approach by sequentially updating models for a five-step surgical progression in an ex vivo specimen. We compute the error between correspondences from the updated model and ground-truth intraoperative CT in the region of anatomical modification. The resulting models show a decrease in error during surgical progression as opposed to increasing when no update is employed. CONCLUSION: Our findings suggest that preoperative 3D anatomical models can be updated using intraoperative endoscopy video in navigated sinus surgery. Future work will investigate improvements to monocular depth estimation as well as removing the need for external navigation systems. The resulting ability to continuously update the patient model may provide surgeons with a more precise understanding of the current anatomical state and paves the way toward a digital twin paradigm for sinus surgery.


Assuntos
Endoscopia , Imageamento Tridimensional , Modelos Anatômicos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Imageamento Tridimensional/métodos , Humanos , Endoscopia/métodos , Tomografia Computadorizada por Raios X/métodos , Cirurgia Assistida por Computador/métodos , Seios Paranasais/cirurgia , Seios Paranasais/diagnóstico por imagem
7.
Med Image Comput Comput Assist Interv ; 14228: 133-143, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38617200

RESUMO

Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity - corridor, activity, view, and frame value - simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 99.2% on simulated sequences and 71.7% in cadaver across all granularity levels, with up to 84% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room.

8.
Nat Mach Intell ; 5(3): 294-308, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523605

RESUMO

Artificial intelligence (AI) now enables automated interpretation of medical images. However, AI's potential use for interventional image analysis remains largely untapped. This is because the post hoc analysis of data collected during live procedures has fundamental and practical limitations, including ethical considerations, expense, scalability, data integrity and a lack of ground truth. Here we demonstrate that creating realistic simulated images from human models is a viable alternative and complement to large-scale in situ data collection. We show that training AI image analysis models on realistically synthesized data, combined with contemporary domain generalization techniques, results in machine learning models that on real data perform comparably to models trained on a precisely matched real data training set. We find that our model transfer paradigm for X-ray image analysis, which we refer to as SyntheX, can even outperform real-data-trained models due to the effectiveness of training on a larger dataset. SyntheX provides an opportunity to markedly accelerate the conception, design and evaluation of X-ray-based intelligent systems. In addition, SyntheX provides the opportunity to test novel instrumentation, design complementary surgical approaches, and envision novel techniques that improve outcomes, save time or mitigate human error, free from the ethical and practical considerations of live human data collection.

9.
IEEE Trans Med Robot Bionics ; 5(4): 966-977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38779126

RESUMO

As one of the most commonly performed spinal interventions in routine clinical practice, lumbar punctures are usually done with only hand palpation and trial-and-error. Failures can prolong procedure time and introduce complications such as cerebrospinal fluid leaks and headaches. Therefore, an effective needle insertion guidance method is desired. In this work, we present a complete lumbar puncture guidance system with the integration of (1) a wearable mechatronic ultrasound imaging device, (2) volume-reconstruction and bone surface estimation algorithms and (3) two alternative augmented reality user interfaces for needle guidance, including a HoloLens-based and a tablet-based solution. We conducted a quantitative evaluation of the end-to-end navigation accuracy, which shows that our system can achieve an overall needle navigation accuracy of 2.83 mm and 2.76 mm for the Tablet-based and the HoloLens-based solutions, respectively. In addition, we conducted a preliminary user study to qualitatively evaluate the effectiveness and ergonomics of our system on lumbar phantoms. The results show that users were able to successfully reach the target in an average of 1.12 and 1.14 needle insertion attempts for Tablet-based and HoloLens-based systems, respectively, exhibiting the potential to reduce the failure rates of lumbar puncture procedures with the proposed lumbar-puncture guidance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA