Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Neurobiol ; 30: 37-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928846

RESUMO

Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.


Assuntos
Transtornos Mentais , Animais , Transtornos Mentais/tratamento farmacológico , Modelos Animais
2.
Neuropharmacology ; 227: 109424, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720403

RESUMO

Recent evidence suggests that inhibition of the M5 muscarinic acetylcholine receptor (mAChR) may provide a novel non-opioid mechanism for the treatment of opioid use disorder (OUD). Previous studies from our group and others have demonstrated that acute administration of the long-acting M5 negative allosteric modulator (NAM) ML375 attenuates established self-administration of cocaine, ethanol, oxycodone, and remifentanil in rats. In the present study, we characterized the effects of acute and repeated administration of the novel, short-acting M5 NAM VU6008667 on the reinforcing effects of oxycodone and reinstatement of oxycodone-seeking behaviors in male Sprague-Dawley rats, as well as on physiological withdrawal from oxycodone. Acute VU6008667 decreased oxycodone self-administration under both fixed ratio 3 (FR3) and progressive ratio (PR) schedules of reinforcement and attenuated cue-induced reinstatement of lever pressing following extinction from oxycodone self-administration, a commonly used relapse model. When administered daily to opioid-naïve rats, VU6008667 prevented acquisition of oxycodone self-administration behavior. VU6008667 had minimal effects on naloxone-precipitated withdrawal. After acute administration, VU6008667 did not inhibit sucrose self-administration and, when given chronically, delayed but did not prevent acquisition of sucrose maintained self-administration. VU6008667 also did not impact oxycodone induced anti-nociception or motor coordination, but mildly decreased novelty exploration. Finally, acute or daily VU6008667 administration did not impair cued fear conditioning. Overall, these results suggest that inhibition of the M5 mAChR may provide a novel, non-opioid based treatment for distinct aspects of OUD by inhibiting opioid intake in established OUD, reducing relapse during abstinence, and by reducing the risk of developing OUD.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Animais , Masculino , Ratos , Oxicodona , Ratos Sprague-Dawley , Receptores Muscarínicos , Autoadministração , Sacarose/farmacologia
3.
ACS Chem Neurosci ; 14(3): 435-457, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655909

RESUMO

Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.


Assuntos
Nível de Alerta , Agonistas Muscarínicos , Transtornos Neurocognitivos , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Sono , Animais , Camundongos , Acetilcolinesterase/metabolismo , Nível de Alerta/efeitos dos fármacos , Nível de Alerta/fisiologia , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Donepezila/farmacologia , Donepezila/uso terapêutico , Agonistas Muscarínicos/farmacologia , Agonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Vigília/efeitos dos fármacos , Vigília/fisiologia , Sono/efeitos dos fármacos , Sono/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/metabolismo
4.
J Med Chem ; 65(8): 6273-6286, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35417155

RESUMO

The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, VU6019650 (27b) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Receptor Muscarínico M5 , Animais , Neurônios Dopaminérgicos , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1 , Receptores Muscarínicos
5.
J Biol Rhythms ; 35(1): 45-57, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31619104

RESUMO

The circadian system regulates daily rhythms of physiology and behavior. Although extraordinary advances have been made to elucidate the brain mechanisms underlying the circadian system in nocturnal species, less is known in diurnal species. Recent studies have shown that retinorecipient brain areas such as the intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPT) are critical for the display of normal patterns of daily activity in diurnal grass rats (Arvicanthis niloticus). Specifically, grass rats with IGL and OPT lesions respond to light in similar ways to intact nocturnal animals. Importantly, both the IGL and OPT project to one another in nocturnal species, and there is evidence that these 2 brain regions also project to the superior colliculus (SC). The SC receives direct retinal input, is involved in the triggering of rapid eye movement sleep in nocturnal rats, and is disproportionately large in the diurnal grass rat. The objective of the current study was to use diurnal grass rats to test the hypothesis that the SC is critical for the expression of diurnal behavior and physiology. We performed bilateral electrolytic lesions of the SC in female grass rats to examine behavioral patterns and acute responses to light. Most grass rats with SC lesions expressed significantly reduced activity in the presence of light. Exposing these grass rats to constant darkness reinstated activity levels during the subjective day, suggesting that light masks their ability to display a diurnal activity profile in 12:12 LD. Altogether, our data suggest that the SC is critical for maintaining normal responses to light in female grass rats.


Assuntos
Murinae/fisiologia , Estimulação Luminosa , Colículos Superiores/patologia , Colículos Superiores/efeitos da radiação , Animais , Ritmo Circadiano , Escuridão , Feminino
6.
Adv Pharmacol ; 86: 153-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31378251

RESUMO

Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.


Assuntos
Receptores Muscarínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/química , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Humanos , Transdução de Sinais
7.
ACS Chem Neurosci ; 10(8): 3740-3750, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31268669

RESUMO

Opioid use disorder (OUD) is a debilitating neuropsychiatric condition characterized by compulsive opioid use, dependence, and repeated relapse after periods of abstinence. Given the high risk of developing OUD following prescription opioid use, the continued need for opioid-induced analgesia, and the limitations of current OUD treatments, it is necessary to develop novel, non-opioid-based treatments for OUD and decrease abuse potential of prescription opioids. Recent evidence suggests that negative allosteric modulation (NAM) of the M5 muscarinic acetylcholine receptor (M5 mAChR) may provide an alternative therapeutic approach for the treatment of OUD. Previous studies demonstrated localization of M5 mAChR expression within the mesocorticolimbic reward circuitry and that the selective M5 NAM ML375 attenuates both cocaine and alcohol self-administration in rats. In the present study, the effects of ML375 were evaluated in rats self-administering the µ-opioid agonists oxycodone or remifentanil on a progressive ratio (PR) schedule or on cue reactivity (a rodent model of relapse) in the absence of oxycodone following 72 h of abstinence. ML375 reduced the PR break point for oxycodone and remifentanil self-administration and attenuated cue-elicited responding. Importantly, ML375 did not affect sucrose pellet-maintained responding on a PR schedule or opioid-induced antinociception using the hot-plate and tail-flick assays. We also confirm expression of M5 mAChR mRNA in the ventral tegmental area and show that this is primarily on dopamine (tyrosine hydroxylase mRNA-positive) neurons. Taken together, these findings suggest that selective functional antagonism of the M5 mAChR may represent a novel, non-opioid-based treatment for OUD.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Entorpecentes/administração & dosagem , Nociceptividade/efeitos dos fármacos , Oxicodona/administração & dosagem , Receptor Muscarínico M5/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Ratos , Ratos Sprague-Dawley , Remifentanil/administração & dosagem , Recompensa , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA