Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biol Chem ; 299(1): 102788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509146

RESUMO

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis. Here, we show that the RNA-binding protein Unkempt, a key regulator of cellular morphogenesis, is a novel substrate of mTORC1. We show that Unkempt phosphorylation is regulated by nutrient levels and growth factors via mTORC1. To analyze Unkempt phosphorylation, we immunoprecipitated Unkempt from cells in the presence or the absence of the mTORC1 inhibitor rapamycin and used mass spectrometry to identify mTORC1-dependent phosphorylated residues. This analysis showed that mTORC1-dependent phosphorylation is concentrated in a serine-rich intrinsically disordered region in the C-terminal half of Unkempt. We also found that Unkempt physically interacts with and is directly phosphorylated by mTORC1 through binding to the regulatory-associated protein of mTOR, Raptor. Furthermore, analysis in the developing brain of mice lacking TSC1 expression showed that phosphorylation of Unkempt is mTORC1 dependent in vivo. Finally, mutation analysis of key serine/threonine residues in the serine-rich region indicates that phosphorylation inhibits the ability of Unkempt to induce a bipolar morphology. Phosphorylation within this serine-rich region thus profoundly affects the ability of Unkempt to regulate cellular morphogenesis. Taken together, our findings reveal a novel molecular link between mTORC1 signaling and cellular morphogenesis.


Assuntos
Proteínas de Transporte , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Morfogênese , Fosforilação , Serina/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Processos de Crescimento Celular , Proteínas de Transporte/metabolismo
2.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32170339

RESUMO

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Morfolinas/farmacologia , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
3.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658640

RESUMO

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Assuntos
Biomarcadores Tumorais/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Neoplásica da Expressão Gênica , Neurofibrossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Adolescente , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurofibrossarcoma/genética , Neurofibrossarcoma/metabolismo , Prognóstico , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266331

RESUMO

Depot specific expansion of orbital-adipose-tissue (OAT) in Graves' Orbitopathy (GO) is associated with lipid metabolism signaling defects. We hypothesize that the unique adipocyte biology of OAT facilitates its expansion in GO. A comprehensive comparison of OAT and white-adipose-tissue (WAT) was performed by light/electron-microscopy, lipidomic and transcriptional analysis using ex vivo WAT, healthy OAT (OAT-H) and OAT from GO (OAT-GO). OAT-H/OAT-GO have a single lipid-vacuole and low mitochondrial number. Lower lipolytic activity and smaller adipocytes of OAT-H/OAT-GO, accompanied by similar essential linoleic fatty acid (FA) and (low) FA synthesis to WAT, revealed a hyperplastic OAT expansion through external FA-uptake via abundant SLC27A6 (FA-transporter) expression. Mitochondrial dysfunction of OAT in GO was apparent, as evidenced by the increased mRNA expression of uncoupling protein 1 (UCP1) and mitofusin-2 (MFN2) in OAT-GO compared to OAT-H. Transcriptional profiles of OAT-H revealed high expression of Iroquois homeobox-family (IRX-3&5), and low expression in HOX-family/TBX5 (essential for WAT/BAT (brown-adipose-tissue)/BRITE (BRown-in-whITE) development). We demonstrated unique features of OAT not presented in either WAT or BAT/BRITE. This study reveals that the pathologically enhanced FA-uptake driven hyperplastic expansion of OAT in GO is associated with a depot specific mechanism (the SLC27A6 FA-transporter) and mitochondrial dysfunction. We uncovered that OAT functions as a distinctive fat depot, providing novel insights into adipocyte biology and the pathological development of OAT expansion in GO.


Assuntos
Tecido Adiposo/patologia , Olho/patologia , Oftalmopatia de Graves/patologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Biologia Computacional/métodos , Olho/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Oftalmopatia de Graves/etiologia , Oftalmopatia de Graves/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Transcriptoma
5.
Semin Cell Dev Biol ; 52: 39-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860753

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant tumour predisposition syndrome that is caused through loss of function mutations of a tumour suppressor gene called Neurofibromin 1. Therapeutic options are currently limited for NF1-associated tumours, where treatment is often restricted to complete surgical resection with clear margins. Herein, we discuss the multifunctional tumour suppressive role of neurofibromin, which is classically known as a GTPase activating protein (GAP) towards the RAS small GTPase. While neurofibromin inhibits proliferative growth through blockade of RAS-mediated signal transduction, neurofibromin should also be considered as a modulator of cell motility and cell adhesion. Through interfacing with the cytoskeleton and membrane structures, neurofibromin acts as a negative regulator of RHO/ROCK signalling pathways involved in cytoskeletal dynamics that are instrumental in proper neuronal development. In the context of cancer, the loss of normal function of neurofibromin via genetic mutation results in heightened cell proliferation and migration, predisposing NF1 patients to cancer. Malignant Peripheral Nerve Sheath Tumours (MPNSTs) can develop from benign neurofibromas and are the main cause of death amongst NF1 patients. Through recent research on MPNSTs, we have gained insight into the key molecular events that drive their malignancy. Advances regarding malignant drivers involved in cell migration, cell invasion and angiogenic signalling are discussed in this review, where these findings will likely influence future therapies for both NF1 and related sporadic cancers.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Animais , Proliferação de Células/fisiologia , Progressão da Doença , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Neurofibromatose 1/genética , Transdução de Sinais
6.
Semin Cell Dev Biol ; 52: 12-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849906

RESUMO

Understanding the development and function of the nervous system is one of the foremost aims of current biomedical research. The nervous system is generated during a relatively short period of intense neurogenesis that is orchestrated by a number of key molecular signalling pathways. Even subtle defects in the activity of these molecules can have serious repercussions resulting in neurological, neurodevelopmental and neurocognitive problems including epilepsy, intellectual disability and autism. Tuberous sclerosis complex (TSC) is a monogenic disease characterised by these problems and by the formation of benign tumours in multiple organs, including the brain. TSC is caused by mutations in the TSC1 or TSC2 gene leading to activation of the mechanistic target of rapamycin (mTOR) signalling pathway. A desire to understand the neurological manifestations of TSC has stimulated research into the role of the mTOR pathway in neurogenesis. In this review we describe TSC neurobiology and how the use of animal model systems has provided insights into the roles of mTOR signalling in neuronal differentiation and migration. Recent progress in this field has identified novel mTOR pathway components regulating neuronal differentiation. The roles of mTOR signalling and aberrant neurogenesis in epilepsy are also discussed. Continuing efforts to understand mTOR neurobiology will help to identify new therapeutic targets for TSC and other neurological diseases.


Assuntos
Neurogênese , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Animais , Modelos Animais de Doenças , Humanos , Transdução de Sinais , Esclerose Tuberosa/enzimologia , Esclerose Tuberosa/genética
7.
Int J Mol Sci ; 19(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547541

RESUMO

Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell's capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.


Assuntos
Autofagia , Crescimento Celular , Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese Peptídica , Animais , Metabolismo Energético , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Ribossomos/metabolismo
9.
Semin Cell Dev Biol ; 36: 66-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25445442

RESUMO

Mechanistic target of rapamycin (mTOR) (historically known as mammalian target of rapamycin) functions as a master regulator of cell growth control. Although the regulation of protein translation is probably the best understood function of mTOR, it is clear that mTOR governs many additional processes within the cell that together orchestrates organism growth and development. Our 'growing' knowledge of the regulation of mTOR and signalling pathways has broadened significantly over the last few decades. Together, the eight reviews described in this special series on mTOR covers fundamental and up-to-date facets of mTOR function and signalling. The review topics herein underpin the importance of mTOR for developing and maintaining biological systems through the regulation of cellular growth and homeostatic pathways, which is fundamental for life and well-being.


Assuntos
Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Biossíntese de Proteínas/genética , Transdução de Sinais/genética
10.
Hum Genomics ; 9: 3, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884485

RESUMO

BACKGROUND: Neurofibromatosis type-1 (NF1) is a complex neurogenetic disorder characterised by the development of benign and malignant tumours of the peripheral nerve sheath (MPNSTs). Whilst biallelic NF1 gene inactivation contributes to benign tumour formation, additional cellular changes in gene structure and/or expression are required to induce malignant transformation. Although few molecular profiling studies have been performed on the process of progression of pre-existing plexiform neurofibromas to MPNSTs, the integrated analysis of copy number alterations (CNAs) and gene expression is likely to be key to understanding the molecular mechanisms underlying NF1-MPNST tumorigenesis. In a pilot study, we employed this approach to identify genes differentially expressed between benign and malignant NF1 tumours. RESULTS: SPP1 (osteopontin) was the most differentially expressed gene (85-fold increase in expression), compared to benign plexiform neurofibromas. Short hairpin RNA (shRNA) knockdown of SPP1 in NF1-MPNST cells reduced tumour spheroid size, wound healing and invasion in four different MPNST cell lines. Seventy-six genes were found to exhibit concordance between CNA and gene expression level. CONCLUSIONS: Pathway analysis of these genes suggested that glutathione metabolism and Wnt signalling may be specifically involved in NF1-MPNST development. SPP1 is associated with malignant transformation in NF1-associated MPNSTs and could prove to be an important target for therapeutic intervention.


Assuntos
Variações do Número de Cópias de DNA/genética , Neoplasias de Bainha Neural/genética , Neurofibromatose 1/genética , Osteopontina/biossíntese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias de Bainha Neural/complicações , Neurofibromatose 1/complicações , Osteopontina/genética
11.
Proc Natl Acad Sci U S A ; 110(32): E2950-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878245

RESUMO

Reactive intermediates such as reactive nitrogen species play essential roles in the cell as signaling molecules but, in excess, constitute a major source of cellular damage. We found that nitrosative stress induced by steady-state nitric oxide (NO) caused rapid activation of an ATM damage-response pathway leading to downstream signaling by this stress kinase to LKB1 and AMPK kinases, and activation of the TSC tumor suppressor. As a result, in an ATM-, LKB1-, TSC-dependent fashion, mTORC1 was repressed, as evidenced by decreased phosphorylation of S6K, 4E-BP1, and ULK1, direct targets of the mTORC1 kinase. Decreased ULK1 phosphorylation by mTORC1 at S757 and activation of AMPK to phosphorylate ULK1 at S317 in response to nitrosative stress resulted in increased autophagy: the LC3-II/LC3-I ratio increased as did GFP-LC3 puncta and acidic vesicles; p62 levels decreased in a lysosome-dependent manner, confirming an NO-induced increase in autophagic flux. Induction of autophagy by NO correlated with loss of cell viability, suggesting that, in this setting, autophagy was functioning primarily as a cytotoxic response to excess nitrosative stress. These data identify a nitrosative-stress signaling pathway that engages ATM and the LKB1 and TSC2 tumor suppressors to repress mTORC1 and regulate autophagy. As cancer cells are particularly sensitive to nitrosative stress, these data open another path for therapies capitalizing on the ability of reactive nitrogen species to induce autophagy-mediated cell death.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Autofagia/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/metabolismo , Espermina/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
12.
Hum Mol Genet ; 22(21): 4383-97, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784378

RESUMO

Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions. Since BHD manifests hallmark characteristics of ciliopathies, we speculated that FLCN might also have a ciliary role. Our data indicate that FLCN localizes to motile and non-motile cilia, centrosomes and the mitotic spindle. Alteration of FLCN levels can cause changes to the onset of ciliogenesis, without abrogating it. In three-dimensional culture, abnormal expression of FLCN disrupts polarized growth of kidney cells and deregulates canonical Wnt signalling. Our findings further suggest that BHD-causing FLCN mutants may retain partial functionality. Thus, several BHD symptoms may be due to abnormal levels of FLCN rather than its complete loss and accordingly, we show expression of mutant FLCN in a BHD-associated renal carcinoma. We propose that BHD is a novel ciliopathy, its symptoms at least partly due to abnormal ciliogenesis and canonical Wnt signalling.


Assuntos
Síndrome de Birt-Hogg-Dubé/fisiopatologia , Cílios/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Síndrome de Birt-Hogg-Dubé/genética , Linhagem Celular , Polaridade Celular , Proliferação de Células , Centrossomo/fisiologia , Cílios/patologia , Humanos , Rim/fisiologia , Microtúbulos/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Via de Sinalização Wnt
14.
J Biol Chem ; 287(21): 17530-17545, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474287

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.


Assuntos
Antinematódeos/farmacologia , Niclosamida/farmacologia , Proteínas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR
15.
Biochem Soc Trans ; 41(4): 939-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863160

RESUMO

In order for cells to divide in a proficient manner, they must first double their biomass, which is considered to be the main rate-limiting phase of cell proliferation. Cell growth requires an abundance of energy and biosynthetic precursors such as lipids and amino acids. Consequently, the energy and nutrient status of the cell is acutely monitored and carefully maintained. mTORC1 [mammalian (or mechanistic) target of rapamycin complex 1] is often considered to be the master regulator of cell growth that enhances cellular biomass through up-regulation of protein translation. In order for cells to control cellular homoeostasis during growth, there is close signalling interplay between mTORC1 and two other protein kinases, AMPK (AMP-activated protein kinase) and ULK1 (Unc-51-like kinase 1). This kinase triad collectively senses the energy and nutrient status of the cell and appropriately dictates whether the cell will actively favour energy- and amino-acid-consuming anabolic processes such as cellular growth, or energy- and amino-acid-generating catabolic processes such as autophagy. The present review discusses important feedback mechanisms between these three homoeostatic protein kinases that orchestrate cell growth and autophagy, with a particular focus on the mTORC1 component raptor (regulatory associated protein of mammalian target of rapamycin), as well as the autophagy-initiating kinase ULK1.


Assuntos
Adenilato Quinase/metabolismo , Metabolismo Energético , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
16.
J Extracell Vesicles ; 12(6): e12336, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337371

RESUMO

Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) is a feature of many solid tumours and is a key pathogenic driver in the inherited condition Tuberous Sclerosis Complex (TSC). Modulation of the tumour microenvironment by extracellular vesicles (EVs) is known to facilitate the development of various cancers. The role of EVs in modulating the tumour microenvironment and their impact on the development of TSC tumours, however, remains unclear. This study, therefore, focuses on the poorly defined contribution of EVs to tumour growth in TSC. We characterised EVs secreted from TSC2-deficient and TSC2-expressing cells and identified a distinct protein cargo in TSC2-deficient EVs, containing an enrichment of proteins thought to be involved in tumour-supporting signalling pathways. We show EVs from TSC2-deficient cells promote cell viability, proliferation and growth factor secretion from recipient fibroblasts within the tumour microenvironment. Rapalogs (mTORC1 inhibitors) are the current therapy for TSC tumours. Here, we demonstrate a previously unknown intercellular therapeutic effect of rapamycin in altering EV cargo and reducing capacity to promote cell proliferation in the tumour microenvironment. Furthermore, EV cargo proteins have the potential for clinical applications as TSC biomarkers, and we reveal three EV-associated proteins that are elevated in plasma from TSC patients compared to healthy donor plasma.


Assuntos
Vesículas Extracelulares , Esclerose Tuberosa , Humanos , Proteínas Supressoras de Tumor , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Vesículas Extracelulares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microambiente Tumoral
17.
Am J Physiol Endocrinol Metab ; 302(11): E1329-42, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22354780

RESUMO

Amino acid availability is a rate-limiting factor in the regulation of protein synthesis. When amino acid supplies become restricted, mammalian cells employ homeostatic mechanisms to rapidly inhibit processes such as protein synthesis, which demands high levels of amino acids. Muscle cells in particular are subject to high protein turnover rates to maintain amino acid homeostasis. Mammalian target of rapamycin complex 1 (mTORC1) is an evolutionary conserved multiprotein complex that coordinates a network of signaling cascades and functions as a key mediator of protein translation, gene transcription, and autophagy. Signal transduction through mTORC1, which is centrally involved in muscle growth through enhanced protein translation, is governed by intracellular amino acid supply. The branched-chain amino acid leucine is critical for muscle growth and acts in part through activation of mTORC1. Recent research has revealed that mTORC1 signaling is coordinated primarily at the lysosomal membranes. This discovery has sparked a wealth of research in this field, revealing several different signaling molecules involved in transducing the amino acid signal to mTORC1, including the Rag GTPases, MAP4K3, and Vps34/ULK1. This review evaluates the current knowledge regarding cellular mechanisms that control and sense the intracellular amino acid pool. We discuss the role of leucine and mTORC1 in the regulation of amino acid transport via the system L and system A transporters such as LAT1 and SNAT2, as well as protein degradation via autophagic and proteasomal pathways. We also describe the complexities of energy homeostasis via AMPK and cell receptor-mediated growth signals that also converge on mTORC1. Leucine is a particularly potent regulator of protein turnover, to the extent where leucine stimulation alone is sufficient to stimulate mTORC1 signal transduction. The significance of leucine in this context is not yet known; however, recent advancements in this area will also be covered within this review.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Leucina/genética , Leucina/fisiologia , Músculo Esquelético/fisiologia , Proteínas/genética , Proteínas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Humanos , Leucina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Músculo Esquelético/efeitos dos fármacos , Proteólise , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
18.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551683

RESUMO

Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.

19.
J Biol Chem ; 285(11): 7866-79, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20022946

RESUMO

The mammalian target of rapamycin (mTOR) Ser/Thr kinase signals in at least two multiprotein complexes distinguished by their different partners and sensitivities to rapamycin. Acute rapamycin inhibits signaling by mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), which both promote cell growth, proliferation, and survival. Although mTORC2 regulation remains poorly defined, diverse cellular mitogens activate mTORC1 signaling in a manner that requires sufficient levels of amino acids and cellular energy. Before the identification of distinct mTOR complexes, mTOR was reported to autophosphorylate on Ser-2481 in vivo in a rapamycin- and amino acid-insensitive manner. These results suggested that modulation of mTOR intrinsic catalytic activity does not universally underlie mTOR regulation. Here we re-examine the regulation of mTOR Ser-2481 autophosphorylation (Ser(P)-2481) in vivo by studying mTORC-specific Ser(P)-2481 in mTORC1 and mTORC2, with a primary focus on mTORC1. In contrast to previous work, we find that acute rapamycin and amino acid withdrawal markedly attenuate mTORC1-associated mTOR Ser(P)-2481 in cycling cells. Although insulin stimulates both mTORC1- and mTORC2-associated mTOR Ser(P)-2481 in a phosphatidylinositol 3-kinase-dependent manner, rapamycin acutely inhibits insulin-stimulated mTOR Ser(P)-2481 in mTORC1 but not mTORC2. By interrogating diverse mTORC1 regulatory input, we find that without exception mTORC1-activating signals promote, whereas mTORC1-inhibitory signals decrease mTORC1-associated mTOR Ser(P)-2481. These data suggest that mTORC1- and likely mTORC2-associated mTOR Ser-2481 autophosphorylation directly monitors intrinsic mTORC-specific catalytic activity and reveal that rapamycin inhibits mTORC1 signaling in vivo by reducing mTORC1 catalytic activity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Células 3T3-L1 , Animais , Anticorpos/farmacologia , Catálise , Linhagem Celular Transformada , Fibroblastos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Rim/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação , Proteínas Serina-Treonina Quinases/imunologia , Proteínas , Coelhos , Serina/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
20.
J Cell Biol ; 173(2): 279-89, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16636147

RESUMO

Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor.


Assuntos
Membrana Celular/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Substâncias de Crescimento/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Modelos Biológicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA