Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458353

RESUMO

The type of aggregation in conjugated polymers determines their use in electronic devices. H-type aggregates are most suitable for solar cell applications, while J-type aggregates are recommended for light-emitting diodes. In this work, we used three methods to determine the type of aggregates in a benzodithiophene-isoindigo-based (PBDTI-DT) copolymer, namely, Huang-Rhys factor evolution with temperature, Franck-Condon analysis, and relative quantum yield (QY) calculation. All three methods indicate that both aggregation types are present, and the QY calculation clearly indicates that H-aggregates are more dominant. Time-dependent density functional theory was used to identify the two absorption bands of PBDTI-DT as local π - π* and intramolecular charge-transfer transitions.

2.
ACS Omega ; 9(7): 8082-8091, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405528

RESUMO

Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2'-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.

3.
Heliyon ; 9(2): e13261, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785835

RESUMO

The need to make clean water accessible and affordable for low-income countries is crucial. This study examines the suitability of various clays for Ceramic Pot Water Filters production and groundwater treatment for effective microbe and fluoride removal. For this study, three clays were collected from different geographical locations in Ethiopia,i.e., Hosaenna Clay, Babawuha Clay, and Leku Clay. Organic additives such as sawdust and eragrostis tef husks were used to increase the porosity of the Ceramic Pot Water Filters. The Atterberg limit and particle size distribution tests revealed that BC and HC have moderate to high plasticity and mouldability, making them suitable for CPWF production. The clay chemical composition, phase analysis, and thermal properties were determined using XRF, XRD, and TGA/DTA. The turbidity, fluoride level, total dissolved solids, and pH of the groundwater decreases, from 13 to 0.45 NTU, from 3.4 to 0.053 mg/100 mL, from 1245 to 360 mg/l, and from 8.4 to 7.3, respectively; all of which are within the acceptable range of WHO drinking water standards. Microbial removal tests show that the CPWFs removed 99.3%-100% of total coliform bacteria and 98.48%-100% of fecal coliform bacteria from groundwater. Therefore, this work paves the way to fabricate a clay-based ceramic water filter for low-income countries to provide affordable household groundwater treatment technology for microbial and excess fluoride removal.

4.
RSC Adv ; 13(24): 16175-16184, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260711

RESUMO

Recently, plasmonic nanoparticles (NPs) have attracted considerable attention as good candidates for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs) owing to their localized surface plasmon resonance (LSPR). In this study, the effect of embedding colloidal gold nanoparticles (cAu NPs) in the ZnO electron transport layer (ETL) on the PCEs of wide band gap polymer-based inverted OSCs was investigated. The active layer was composed of a bulk heterojunction of conjugated polymer based on indacenodithieno[3,2-b]thiophene and 5,5'-di(thiophen-2-yl)-2,2'-bithiazole PIDTT-DTBTz as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. The PCE of the reference device was improved by 22% when 10 wt% cAu NPs were embedded in the ZnO ETL. The short circuit current density (JSC) and fill factor (FF) were the main photovoltaic parameters contributing to the PCE enhancement. An improved absorption in the active layer due to the LSPR of cAu NPs as well as efficient exciton dissociation and charge collection were found to be the reasons for the enhanced JSC while the increase in FF was mainly due to the suppressed traps and improved conductivity of the ZnO layer by the NPs.

5.
Polymers (Basel) ; 13(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916513

RESUMO

Three low-band-gap copolymers based on isoindigo acceptor units were designed and successfully synthesized by direct arylation polycondensation method. Two of them were benzodithiophene (BDT)-isoindigo copolymers (PBDTI-OD and PBDTI-DT) with 2-octlydodecyl (OD) and 2-decyltetradecyl (DT) substituted isoindigo units, respectively. Thiophene donor and DT-substituted isoindigo acceptor units were copolymerized to synthesize PTI-DT. The copolymers have a broad absorption range that extends to over 760 nm with a band gap ≈1.5 eV. The photophysical property studies showed that the BDT-based copolymers have non-polar ground states. Their emission exhibited the population of the intramolecular charge transfer (ICT) state in polar solvents and tightly bound excitonic state in non-polar solvents due to self-aggregation. On the contrary, the emission from the thiophene-based copolymers was only from the tightly bound excitonic state. The thermal decomposition temperature of the copolymers was above 380 °C. The X-ray diffraction pattern of the three copolymers showed a halo due to π-π stacking. A second, sharper peak was observed in the BDT-based copolymer with a longer side chain on the isoindigo unit (PBDTI-DT), and the thiophene-based copolymers with PTI-DT, exhibiting a better structural order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA