Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
2.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598053

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Assuntos
Doença de Alzheimer , Fibronectinas , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Fibronectinas/genética , Variação Genética/genética , Gliose , Peixe-Zebra
3.
Acta Neuropathol ; 148(1): 27, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177846

RESUMO

Genetic variants and epigenetic features both contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as a hub of both the genetic and epigenetic effects, in Caribbean Hispanics (CH) and generalized the findings to Non-Hispanic Whites (NHW). First, we conducted a genome-wide, sliding-window-based association with AD, in 7,155 CH and 1,283 NHW participants. Next, using data from the dorsolateral prefrontal cortex in 179 CH brains, we tested the cis- and trans-effects of AD-associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we investigated their enriched pathways. We identified six genetic loci in CH with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score = 55.19, P = 4.06 × 10-8), the intergenic region between VRTN and SYNDIG1L (Score = - 37.67, P = 2.25 × 10-9), SPG7 (16q24.3) (Score = 40.51, P = 2.23 × 10-8), PVRL2 (Score = 125.86, P = 1.64 × 10-9), TOMM40 (Score = - 18.58, P = 4.61 × 10-8), and APOE (Score = 75.12, P = 7.26 × 10-26). CGSes in PVRL2 and APOE were also significant in NHW. Except for ADAM20, CGSes in the other five loci were associated with CH brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L (P = 0.08), brain methylation levels in the other five loci affected downstream mRNA expression in CH (P < 0.05), and methylation at VRTN and TOMM40 were also associated with mRNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and glutamatergic synapse pathways (FDR < 0.05). DNA methylation at all six loci and mRNA expression of SYNDIG1 and TOMM40 were significantly associated with Braak Stage in CH. In summary, we identified six CpG-related genetic loci associated with AD in CH, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.


Assuntos
Doença de Alzheimer , Encéfalo , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hispânico ou Latino , Polimorfismo de Nucleotídeo Único , População Branca , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/etnologia , Feminino , Masculino , Idoso , População Branca/genética , Encéfalo/patologia , Hispânico ou Latino/genética , Idoso de 80 Anos ou mais , Metilação de DNA , Autopsia , Região do Caribe/etnologia
4.
Alzheimers Dement ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192661

RESUMO

INTRODUCTION: Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early Alzheimer's disease (AD) pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify cerebrospinal fluid  (CSF) biomarkers for AD-related central nervous system (CNS) pathophysiologic changes using tissue and fluids with early pathology, free of post mortem artifact. METHODS: We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS: AD pathology on biopsy correlates with CSF ß-amyloid-42/40, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/ß-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights seven core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data. DISCUSSION: As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking. HIGHLIGHTS: AD CSF biomarkers correlate with CNS pathology and transcriptomic changes. Seven proteins correlate with CNS pathology and gene expression changes. Inflammatory and neuronal gene expression changes correlate with YKL-40 and NPTXR, respectively. CSF metabolomic analysis identifies pathways that correlate with biopsy data. Fatty acid metabolic pathways correlate with ß-amyloid pathology.

5.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357715

RESUMO

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Camundongos , Animais , Humanos , Adulto , Metiltransferases/genética , Fosforilação/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , MicroRNAs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
6.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512061

RESUMO

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética
7.
Brain ; 144(9): 2696-2708, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33856027

RESUMO

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Assuntos
Infarto Encefálico/patologia , Encéfalo/patologia , COVID-19/patologia , Hipóxia-Isquemia Encefálica/patologia , Hemorragias Intracranianas/patologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriemia/complicações , Encéfalo/metabolismo , Infarto Encefálico/complicações , COVID-19/complicações , COVID-19/fisiopatologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Feminino , Humanos , Hipóxia-Isquemia Encefálica/complicações , Inflamação , Unidades de Terapia Intensiva , Hemorragias Intracranianas/complicações , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Neurônios/patologia , Fagocitose , Fosfoproteínas/metabolismo , Embolia Pulmonar/complicações , Embolia Pulmonar/fisiopatologia , RNA Viral/metabolismo , Diálise Renal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Taxa de Sobrevida , Linfócitos T/patologia , Trombose Venosa/complicações , Trombose Venosa/fisiopatologia
8.
Am J Hum Genet ; 103(1): 100-114, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979980

RESUMO

The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Pneumopatias/genética , Mutação/genética , Adolescente , Alelos , Doença de Charcot-Marie-Tooth/genética , Pré-Escolar , Feminino , Genes Recessivos/genética , Heterozigoto , Humanos , Lactente , Masculino , Biossíntese de Proteínas/genética
9.
Alzheimers Dement ; 17(8): 1353-1364, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33580742

RESUMO

INTRODUCTION: Blood-based Alzheimer's disease (AD) biomarkers provide opportunities for community studies and across ethnic groups. We investigated blood biomarker concentrations in the Washington Heights-Inwood Columbia Aging Project (WHICAP), a multi-ethnic community study of aging and dementia. METHODS: We measured plasma amyloid beta (Aß)40, Aß42, total tau (t-tau), phosphorylated tau (p-tau)181, and p-tau217, and neurofilament light chain (NfL) in 113 autopsied participants (29% with high AD neuropathological changes) and in 300 clinically evaluated individuals (42% with clinical AD). Receiver operating characteristics were used to evaluate each biomarker. We also investigated biomarkers as predictors of incident clinical AD. RESULTS: P-tau181, p-tau217, and NfL concentrations were elevated in pathologically and clinically diagnosed AD. Decreased Aß42/Aß40 ratio and increased p-tau217 and p-tau181 were associated with subsequent AD diagnosis. DISCUSSION: Blood-based AD biomarker concentrations are associated with pathological and clinical diagnoses and can predict future development of clinical AD, providing evidence that they can be incorporated into multi-ethnic, community-based studies.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/etnologia , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Etnicidade/estatística & dados numéricos , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Autopsia , Feminino , Humanos , Masculino , Cidade de Nova Iorque , Fosforilação , Tomografia por Emissão de Pósitrons
10.
Bioinformatics ; 34(3): 367-371, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028963

RESUMO

Motivation: In an effort to better understand the molecular drivers of synaptic and neurophysiologic dysfunction in Alzheimer's disease (AD), we analyzed neuronal gene expression data from human AD brain tissue to identify master regulators of synaptic gene expression. Results: Master regulator analysis identifies ZCCHC17 as normally supporting the expression of a network of synaptic genes, and predicts that ZCCHC17 dysfunction in AD leads to lower expression of these genes. We demonstrate that ZCCHC17 is normally expressed in neurons and is reduced early in the course of AD pathology. We show that ZCCHC17 loss in rat neurons leads to lower expression of the majority of the predicted synaptic targets and that ZCCHC17 drives the expression of a similar gene network in humans and rats. These findings support a conserved function for ZCCHC17 between species and identify ZCCHC17 loss as an important early driver of lower synaptic gene expression in AD. Availability and implementation: Matlab and R scripts used in this paper are available at https://github.com/afteich/AD_ZCC. Contact: aft25@cumc.columbia.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas Nucleares/genética , Doença de Alzheimer/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Proteínas Nucleares/metabolismo , Ratos , Análise de Sequência de RNA
12.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631094

RESUMO

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Transtornos Cognitivos/metabolismo , Processamento de Proteína Pós-Traducional , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/patologia , Animais , Sinalização do Cálcio , Transtornos Cognitivos/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Fosforilação , Reconhecimento Psicológico/fisiologia , Retículo Sarcoplasmático/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(34): 12550-5, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114226

RESUMO

Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtype-specific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/classificação , Meios de Contraste , Feminino , Glioblastoma/classificação , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , RNA Neoplásico/genética , Análise de Sequência de RNA , Transcriptoma , Microambiente Tumoral
14.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979369

RESUMO

Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. A previously identified non-coding SNP in SH3RF3/POSH2 significantly delayed disease onset in a Caribbean Hispanic cohort carrying the PSEN1 G206A mutation sufficient to cause early-onset AD and microglial expression of SH3RF3 has been reported to be a key driver of late-onset AD. SH3RF3 acts as a JNK pathway scaffold and can activate NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased phospho-tau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oligomeric Aß42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia have reduced inflammatory responses to oAß42. Thus, further reduction of microglial inflammatory responses in PSEN1 mutant carriers by protective SNPs in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.

15.
J Neuropathol Exp Neurol ; 83(7): 626-635, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630575

RESUMO

ZCCHC17 is a master regulator of synaptic gene expression and has recently been shown to play a role in splicing of neuronal mRNA. We previously showed that ZCCHC17 protein declines in Alzheimer's disease (AD) brain tissue before there is significant gliosis and neuronal loss, that ZCCHC17 loss partially replicates observed splicing abnormalities in AD brain tissue, and that maintenance of ZCCHC17 levels is predicted to support cognitive resilience in AD. Here, we assessed the functional consequences of reduced ZCCHC17 expression in primary cortical neuronal cultures using siRNA knockdown. Consistent with its previously identified role in synaptic gene expression, loss of ZCCHC17 led to loss of synaptic protein expression. Patch recording of neurons shows that ZCCHC17 loss significantly disrupted the excitation/inhibition balance of neurotransmission, and favored excitatory-dominant synaptic activity as measured by an increase in spontaneous excitatory post synaptic currents and action potential firing rate, and a decrease in spontaneous inhibitory post synaptic currents. These findings are consistent with the hyperexcitable phenotype seen in AD animal models and in patients. We are the first to assess the functional consequences of ZCCHC17 knockdown in neurons and conclude that ZCCHC17 loss partially phenocopies AD-related loss of synaptic proteins and hyperexcitability.


Assuntos
Doença de Alzheimer , Neurônios , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Técnicas de Silenciamento de Genes , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Sinapses/metabolismo , Sinapses/patologia , Sinapses/genética
16.
Res Sq ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343836

RESUMO

Murine studies have highlighted a crucial role for immune cells in the meninges in surveilling the central nervous system (CNS) and influencing neuroinflammation. However, how meningeal immunity is altered in human neurodegeneration and its effects on CNS inflammation is understudied. We performed the first single-cell analysis of the transcriptomes and T cell receptor (TCR) repertoire of 104,635 immune cells from 55 postmortem human brain and leptomeningeal tissues from donors with neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. RNA and TCR sequencing from paired leptomeninges and brain allowed us to perform lineage tracing to identify the spatial trajectory of clonal T cells in the CNS and its borders. We propose that T cells activated in the brain emigrate to and establish residency in the leptomeninges where they likely contribute to impairments in lymphatic drainage and remotely to CNS inflammation by producing IFNγ and other cytokines. We identified regulatory networks local to the meninges including NK cell-mediated CD8 T cell killing which likely help to control meningeal inflammation. Collectively, these findings provide not only a foundation for future studies into brain border immune surveillance but also highlight important intercellular dynamics that could be leveraged to modulate neuroinflammation.

17.
Acta Neuropathol Commun ; 12(1): 81, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790074

RESUMO

Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, n = 184) from three Alzheimer's Disease Research Centers: Columbia University, University of California San Diego, and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High AD based on the National Institute on Aging- Alzheimer's Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon's test. Ordinal logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW descent and providing insights into precision medicine approaches.


Assuntos
Doença de Alzheimer , Hispânico ou Latino , Corpos de Lewy , População Branca , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/etnologia , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Corpos de Lewy/patologia , Angiopatia Amiloide Cerebral/patologia , Angiopatia Amiloide Cerebral/etnologia , alfa-Sinucleína/metabolismo , Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/etnologia , Arteriolosclerose/patologia
18.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948777

RESUMO

The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.

19.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260431

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.

20.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA