Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38498624

RESUMO

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transferases Intramoleculares , Enxofre , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Enxofre/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteômica , Transcriptoma , Multiômica
2.
Plant Physiol ; 194(3): 1611-1630, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039119

RESUMO

Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.


Assuntos
Fabaceae , Rhizobium , Orosomucoide , Desenvolvimento Embrionário , Ceramidas , Homeostase
3.
Proc Natl Acad Sci U S A ; 116(28): 14325-14330, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235573

RESUMO

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In Arabidopsis, the AP2 family transcription factor PUCHI controls cell proliferation in lateral root primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic dataset of lateral root formation. We report that multiple genes coding for very long chain fatty acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar lateral root developmental defects as puchi-1 Moreover, puchi-1 roots display the same disorganized callus formation phenotype as VLCFA biosynthesis-deficient mutants when grown on auxin-rich callus-inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced VLCFA content compared with WT. We conclude that PUCHI-regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during lateral root and callus formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calo Ósseo/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Calo Ósseo/metabolismo , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética
4.
BMC Plant Biol ; 21(1): 196, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892630

RESUMO

BACKGROUND: The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS: We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION: In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.


Assuntos
Brachypodium/genética , Floema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Xilema/crescimento & desenvolvimento , Brachypodium/crescimento & desenvolvimento , Brachypodium/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Xilema/genética
5.
J Exp Bot ; 71(20): 6471-6490, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32687580

RESUMO

Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Proteômica , Sulfatos/metabolismo
6.
Ann Bot ; 125(6): 993-1002, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32055837

RESUMO

BACKGROUND AND AIMS: Camelina (Camelina sativa, Brassicaceae) has attracted interest in recent years as a novel oilseed crop, and an increasing number of studies have sought to enhance camelina's yield potential or to modify the composition of its oil. The ability of camelina to cross-hybridize with its wild relative, C. microcarpa, is of interest as a potential source of genetic variability for the crop. METHODS: Manual crosses were performed between the crop C. sativa and its wild relative C. microcarpa; F1 and F2 progenies were obtained. Cytology was used to study meiosis in the parents and F1s and to evaluate pollen viability. Flow cytometry was used to estimate nuclear DNA amounts and fatty acid methyl ester analysis was used to evaluate the lipid composition of F3 seeds. KEY RESULTS: The F1 plants obtained by interspecific crossing presented severe abnormalities at meiosis and low pollen viability, and produced very few F2 seeds. The F2s presented diverse phenotypes and in some cases severe developmental abnormalities. Many F2s were aneuploid. The F2s produced highly variable numbers of F3 seeds, and certain F3 seeds presented atypical lipid profiles. CONCLUSIONS: Considering the meiotic abnormalities observed and the probability of aneuploidy in the F2 plants, the C. microcarpa accessions used in this study would be difficult to use as sources of genetic variability for the crop.


Assuntos
Brassicaceae/genética , Ácidos Graxos , Hibridização Genética , Plantas Geneticamente Modificadas , Sementes
7.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077612

RESUMO

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Autofagia , Retículo Endoplasmático/metabolismo , Lipidômica , Mutação/genética , Peroxissomos/metabolismo , Proteômica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
8.
Plant Physiol ; 173(1): 742-759, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895203

RESUMO

Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Algas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Galactolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Estramenópilas/metabolismo , Acetiltransferases/genética , Proteínas de Algas/genética , Clonagem Molecular , Ácido Eicosapentaenoico/genética , Ácidos Graxos Insaturados/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Esfingolipídeos/metabolismo , Estramenópilas/genética , Tilacoides/genética , Tilacoides/ultraestrutura , Triglicerídeos/metabolismo , Leveduras/genética
9.
Plant Biotechnol J ; 15(6): 729-739, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27885771

RESUMO

In many plant species, gene dosage is an important cause of phenotype variation. Engineering gene dosage, particularly in polyploid genomes, would provide an efficient tool for plant breeding. The hexaploid oilseed crop Camelina sativa, which has three closely related expressed subgenomes, is an ideal species for investigation of the possibility of creating a large collection of combinatorial mutants. Selective, targeted mutagenesis of the three delta-12-desaturase (FAD2) genes was achieved by CRISPR-Cas9 gene editing, leading to reduced levels of polyunsaturated fatty acids and increased accumulation of oleic acid in the oil. Analysis of mutations over four generations demonstrated the presence of a large variety of heritable mutations in the three isologous CsFAD2 genes. The different combinations of single, double and triple mutants in the T3 generation were isolated, and the complete loss-of-function mutants revealed the importance of delta-12-desaturation for Camelina development. Combinatorial association of different alleles for the three FAD2 loci provided a large diversity of Camelina lines with various lipid profiles, ranging from 10% to 62% oleic acid accumulation in the oil. The different allelic combinations allowed an unbiased analysis of gene dosage and function in this hexaploid species, but also provided a unique source of genetic variability for plant breeding.


Assuntos
Brassicaceae/genética , Sistemas CRISPR-Cas/genética , Dosagem de Genes/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Brassicaceae/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Edição de Genes , Ácido Oleico/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
10.
Plant J ; 76(5): 811-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112720

RESUMO

In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub-family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing 'half transporters' are semi-dominant and result in vascular patterning defects in cotyledons and the floral stem. Co-immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Floema/crescimento & desenvolvimento , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Homeostase , Metaboloma , Mutação , Floema/genética , Fitosteróis/química , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Multimerização Proteica
11.
J Cell Sci ; 124(Pt 19): 3223-34, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21896643

RESUMO

Acyl chain length is thought to be crucial for biophysical properties of the membrane, in particular during cell division, when active vesicular fusion is necessary. In higher plants, the process of cytokinesis is unique, because the separation of the two daughter cells is carried out by de novo vesicular fusion to generate a laterally expanding cell plate. In Arabidopsis thaliana, very-long-chain fatty acid (VLCFA) depletion caused by a mutation in the microsomal elongase gene PASTICCINO2 (PAS2) or by application of the selective elongase inhibitor flufenacet altered cytokinesis. Cell plate expansion was delayed and the formation of the endomembrane tubular network altered. These defects were associated with specific aggregation of the cell plate markers YFP-Rab-A2a and KNOLLE during cytokinesis. Changes in levels of VLCFA also resulted in modification of endocytosis and sensitivity to brefeldin A. Finally, the cytokinesis impairment in pas2 cells was associated with reduced levels of very long fatty acyl chains in phospholipids. Together, our findings demonstrate that VLCFA-containing lipids are essential for endomembrane dynamics during cytokinesis.


Assuntos
Arabidopsis/citologia , Citocinese , Ácidos Graxos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldina A/farmacologia , Divisão do Núcleo Celular , Vesículas Citoplasmáticas/metabolismo , Endocitose , Microscopia de Fluorescência , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/metabolismo
12.
Plant Cell ; 22(2): 364-75, 2010 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145257

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento
13.
Proc Natl Acad Sci U S A ; 105(38): 14727-31, 2008 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-18799749

RESUMO

Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2-1 mutant. The pas2-1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Acil Coenzima A/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Graxos/metabolismo , Teste de Complementação Genética , Hidroliases/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sementes/metabolismo
14.
Plants (Basel) ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218005

RESUMO

In higher plants, cellulose is synthesized by membrane-spanning large protein complexes named cellulose synthase complexes (CSCs). In this study, the Arabidopsis PASTICCINO2 (PAS2) was identified as an interacting partner of cellulose synthases. PAS2 was previously characterized as the plant 3-hydroxy-acyl-CoA dehydratase, an ER membrane-localized dehydratase that is essential for very-long-chain-fatty acid (VLCFA) elongation. The pas2-1 mutants show defective cell elongation and reduction in cellulose content in both etiolated hypocotyls and light-grown roots. Although disruption of VLCFA synthesis by a genetic alteration had a reduction in VLCFA in both etiolated hypocotyls and light-grown roots, it had a differential effect on cellulose content in the two systems, suggesting the threshold level of VLCFA for efficient cellulose synthesis may be different in the two biological systems. pas2-1 had a reduction in both CSC delivery rate and CSC velocity at the PM in etiolated hypocotyls. Interestingly, Golgi but not post-Golgi endomembrane structures exhibited a severe defect in motility. Experiments using pharmacological perturbation of VLCFA content in etiolated hypocotyls strongly indicate a novel function of PAS2 in the regulation of CSC and Golgi motility. Through a combination of genetic, biochemical and cell biology studies, our study demonstrated that PAS2 as a multifunction protein has an important role in the regulation of cellulose biosynthesis in Arabidopsis hypocotyl.

15.
Sci Rep ; 10(1): 11268, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647331

RESUMO

Programmed cell death (PCD) is essential for several aspects of plant life. We previously identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalysing myo-inositol synthesis, and that displays light-dependent formation of lesions on leaves due to Salicylic Acid (SA) over-accumulation. Rationale of this work was to identify novel regulators of plant PCD using a genetic approach. A screen for secondary mutations that abolish the mips1 PCD phenotype identified a mutation in the BIG gene, encoding a factor of unknown molecular function that was previously shown to play pleiotropic roles in plant development and defence. Physiological analyses showed that BIG is required for lesion formation in mips1 via SA-dependant signalling. big mutations partly rescued transcriptomic and metabolomics perturbations as stress-related phytohormones homeostasis. In addition, since loss of function of the ceramide synthase LOH2 was not able to abolish cell death induction in mips1, we show that PCD induction is not fully dependent of sphingolipid accumulation as previously suggested. Our results provide further insights into the role of the BIG protein in the control of MIPS1-dependent cell death and also into the impact of sphingolipid homeostasis in this pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Inositol/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Análise por Conglomerados , Epistasia Genética , Homeostase , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo
16.
J Agric Food Chem ; 68(3): 788-798, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31852192

RESUMO

Sphingolipids appear as a promising class of components susceptible to prevent the onset of the metabolic syndrome (MetS). Gut availability and effects of Camelina sativa sphingolipids were investigated in a mouse model of dietary-induced MetS. Seed meals from two Camelina sativa lines enriched, respectively, in C24- and C16-NH2- glycosyl-inositol-phosphoryl-ceramides (NH2GIPC) were used in hypercaloric diets. After 5 weeks on these two hypercaloric diets, two markers of the MetS were alleviated (adiposity and insulin resistance) as well as inflammation markers and colon barrier dysfunction. A more pronounced effect was observed with the C16-NH2GIPC-enriched HC diet, in particular for colon barrier function. Despite a lower digestibility, C16-NH2GIPC were more prevalent in the intestine wall. Sphingolipids provided as camelina meal can therefore counteract some deleterious effects of a hypercaloric diet in mice at the intestinal and systemic levels. Interestingly, these beneficial effects seem partly dependent on sphingolipid acyl chain length.


Assuntos
Camellia/química , Mucosa Intestinal/metabolismo , Síndrome Metabólica/prevenção & controle , Extratos Vegetais/metabolismo , Esfingolipídeos/metabolismo , Ração Animal/análise , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Esfingolipídeos/química
17.
Pest Manag Sci ; 65(2): 129-36, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18951412

RESUMO

BACKGROUND: The metabolism of cymoxanil [1-(2-cyano-2-methoxyiminoacetyl)-3-ethylurea] and fungicidal cyanooxime analogues was monitored on three phenotypes of Botrytis cinerea Pers. ex Fr. differing in their sensitivity towards cymoxanil. For this purpose, labelled [2-(14)C]cymoxanil was added either to the culture medium of these strains or to its cell-free extract. RESULTS: In the culture medium of the most sensitive strain, four main metabolites were detected. Three were isolated and identified. Cymoxanil was quickly metabolised by at least three concurrent enzymatic pathways: (i) cyclisation leading, after hydrolysis, to ethylparabanic acid, (ii) reduction giving demethoxylated cymoxanil, (iii) hydrolysis followed by reduction and then acetylation leading to N-acetylcyanoglycine. In the cell-free extract of the same strain, only the first and the second of these enzymatic reactions occurred. By comparing the metabolic profile of the most sensitive strain with that of the less sensitive ones, it was shown that the decrease in sensitivity to cymoxanil correlates with a reduced acetylcyanoglycine formation. Among all metabolites, only N-acetylcyanoglycine is active against the most sensitive strain. Moreover, in a culture of this strain, two other fungicidal cyanooximes were also metabolised into this metabolite. CONCLUSION: The formation of N-acetylcyanoglycine may play an important role in the fungitoxicity of cymoxanil and cyanooxime derivatives.


Assuntos
Acetamidas/química , Acetamidas/metabolismo , Botrytis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Botrytis/química
18.
J Insect Physiol ; 91-92: 63-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27392781

RESUMO

Taste allows insects to detect palatable or toxic foods, identify a mate, and select appropriate oviposition sites. The gustatory system strongly contributes to the survival and reproductive success of many species, yet it is rarely studied in insect parasitoids. In order to locate and assess a host in which they will lay their eggs, female wasps actively search for chemical cues using their sensory organs present mainly on the antennae. In this paper, we studied the role of antennal taste sensilla chaetica in the perception of contact semiochemicals in Trissolcus brochymenae (Hymenoptera: Platygastridae), an egg parasitoid of the brassicaceae pest Murgantia histrionica (Heteroptera: Pentatomidae). Methanolic extracts obtained from male and female hosts elicited action potentials in taste neurons housed in antennal sensilla chaetica, indicating that these sensilla are involved in the perception of non volatile host kairomones. In behavioural assays, wasp females displayed an intense searching behaviour in open arenas treated with host extracts, thus confirming that these kairomones are soluble in polar solvents. We further investigated the extracts by Gas Chromatography-Mass Spectrometry (GC-MS) and found that they contain several compounds which are good candidates for these contact kairomones. This study contributes to better understanding contact chemoreception in egg parasitoids and identifying gustatory receptor neurons involved in the host location process.


Assuntos
Antenas de Artrópodes/fisiologia , Heterópteros/parasitologia , Interações Hospedeiro-Parasita , Oviposição , Percepção Gustatória , Vespas/fisiologia , Animais , Comportamento Apetitivo , Fenômenos Eletrofisiológicos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino
19.
PLoS One ; 11(9): e0160631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583779

RESUMO

Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Acetiltransferases/genética , Arabidopsis/genética , Retículo Endoplasmático/enzimologia , Elongases de Ácidos Graxos , Mutação , Saccharomyces cerevisiae/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-11936693

RESUMO

The metabolism of cyano-oxime fungicide 1-(2-cyano-2-methoxyiminoacetyl)-3-ethylurea (cymoxanil) and analogs was studied on several strains of the fungus Botrytis cinerea owing to their difference in sensitivity towards cymoxanil. Chromatographic analysis of the unextracted culture medium was simpler and more accurate, particularly for ionizable metabolites because it avoids problems associated with extraction. Reversed-phase high-performance liquid chromatography was applied to compare the decrease of cymoxanil and analogs caused by different strains of B. cinerea, by periodic injections of incubated culture medium aliquots, directly on a C4 wide-pore column. Furthermore, a thin-layer chromatographic monitoring on C18 bonded silica gel with ion-pairing allowed the monitoring of the ionizable metabolites for substrates that were demonstrated to decompose most rapidly. These complementary analyses showed that the sensitivity of the highly sensitive strain towards cymoxanil was related to the disappearance of cyano-oximes studied from culture medium, namely to the ability of the strain B. cinerea to metabolize them.


Assuntos
Acetamidas/metabolismo , Botrytis/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Fungicidas Industriais/metabolismo , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA