Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pediatr Res ; 93(3): 559-569, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35732822

RESUMO

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions. Here, we bridged this microarray-based classifier to a clinically applicable quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay: the Kawasaki Disease Gene Expression Profiling (KiDs-GEP) classifier. METHODS: We designed and optimized a qRT-PCR assay and applied it to a subset of samples previously used for the classifier discovery to reweight the original classifier. RESULTS: The performance of the KiDs-GEP classifier was comparable to the original classifier with a cross-validated area under the ROC curve of 0.964 [95% CI: 0.924-1.00] vs 0.992 [95% CI: 0.978-1.00], respectively. Both classifiers demonstrated similar trends over various disease conditions, with the clearest distinction between individuals diagnosed with KD vs viral infections. CONCLUSION: We successfully bridged the microarray-based classifier into the KiDs-GEP classifier, a more rapid and more cost-efficient qRT-PCR assay, bringing a diagnostic test for KD closer to the hospital clinical laboratory. IMPACT: A diagnostic test is needed for Kawasaki disease and is currently not available. We describe the development of a One-Step multiplex qRT-PCR assay and the subsequent modification (i.e., bridging) of the microarray-based host response classifier previously described by Wright et al. The bridged KiDs-GEP classifier performs well in discriminating Kawasaki disease patients from febrile controls. This host response clinical test for Kawasaki disease can be adapted to the hospital clinical laboratory.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Pré-Escolar , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Perfilação da Expressão Gênica , Febre , Curva ROC
2.
J Mol Cell Cardiol ; 88: 145-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436984

RESUMO

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload. To unravel the impact of eNOS on pressure-overload cardiac dysfunction we subjected eNOS deficient, wildtype and eNOS overexpressing transgenic (eNOS-Tg) mice to 8weeks of mild or severe transverse aortic constriction (TAC) and studied cardiac geometry and function at the whole organ and tissue level. In both mild and severe TAC, lack of eNOS ameliorated, whereas eNOS overexpression aggravated, TAC-induced cardiac remodeling and dysfunction. Moreover, the detrimental effects of eNOS in severe TAC were associated with aggravation of TAC-induced NOS-dependent oxidative stress and by further elevation of eNOS monomer levels, consistent with enhanced eNOS uncoupling. In the presence of TAC, scavenging of reactive oxygen species with N-acetylcysteine reduced eNOS S-glutathionylation, eNOS monomer and NOS-dependent superoxide levels in eNOS-Tg mice to wildtype levels. Accordingly, N-acetylcysteine improved cardiac function in eNOS-Tg but not in wildtype mice with TAC. In conclusion, independent of the severity of TAC, eNOS aggravates cardiac remodeling and dysfunction, which appears due to TAC-induced eNOS uncoupling and superoxide production.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Remodelação Ventricular , Acetilcisteína/farmacologia , Animais , Aorta/cirurgia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Constrição Patológica/complicações , Constrição Patológica/cirurgia , Ativação Enzimática , Feminino , Sequestradores de Radicais Livres/farmacologia , Deleção de Genes , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Índice de Gravidade de Doença , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
3.
Circ Res ; 111(5): 585-98, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753078

RESUMO

RATIONALE: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development. However, the role of apelin signaling in stem cell recruitment after ischemia is unknown. OBJECTIVE: To investigate the role of apelin signaling in recruitment after ischemia. METHODS AND RESULTS: Aplnr was specifically expressed in circulating cKit+/Flk1+ cells but not in circulating Sca1+/Flk1+ and Lin+ cells. cKit+/Flk1+/Aplnr+ cells increased significantly early after myocardial ischemia but not after hind limb ischemia, indicative of an important role for apelin/Aplnr in cell recruitment during the nascent biological repair response after myocardial damage. In line with this finding, apelin expression was upregulated in the infarcted myocardium. Injection of apelin into the ischemic myocardium resulted in accelerated and increased recruitment of cKit+/Flk1+/Aplnr+ cells to the heart. Recruited Aplnr+/cKit+/Flk1+ cells promoted neovascularization in the peri-infarct area by paracrine activity rather than active transdifferentiation, resulting into cardioprotection as indicated by diminished scar formation and improved residual cardiac function. Aplnr knockdown in the bone marrow resulted in aggravation of myocardial ischemia-associated damage, which could not be rescued by apelin. CONCLUSIONS: We conclude that apelin functions as a new and potent chemoattractant for circulating cKit+/Flk1+/Aplnr+ cells during early myocardial repair, providing myocardial protection against ischemic damage by improving neovascularization via paracine action.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isquemia Miocárdica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Adipocinas , Animais , Apelina , Receptores de Apelina , Transplante de Medula Óssea , Movimento Celular/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/fisiologia , Injeções Intralesionais , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/metabolismo , Comunicação Parácrina/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Acoplados a Proteínas G/genética , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Vasc Med ; 19(2): 94-102, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24829311

RESUMO

Previously, we created an experimental murine model for the induction of vulnerable plaque (VP). Although this murine model offers the opportunity to study the different molecular biological pathways that regulate plaque destabilization, the size of the animals severely limits the use of the model for in vivo diagnostics and percutaneous interventions. This study aimed to create a VP model in the rabbit, based on the murine model, to aid the assessment and development of novel diagnostic and interventional tools. New Zealand white rabbits were fed on a 2% cholesterol diet. After 1 week, a shear stress-altering device was implanted around the right carotid artery. Twelve weeks after cast placement, the carotid artery was isolated and processed for (immuno-)histological analysis to evaluate the presence of a VP phenotype. Atherosclerotic plaques with high lipid and macrophage content, low vascular smooth muscle cell content and intimal neovascularization were located upstream and downstream of the cast. The plaques lacked a significant necrotic core. In conclusion, we were able to create atherosclerotic plaques with a phenotype beyond that of a fatty streak, with a high percentage of lipids and macrophages, a thick cap with some vascular smooth muscle cells and neovascularization. However, as there was only a small necrotic core, the overall phenotype seems less vulnerable as compared to the thin fibrous cap atheroma in patients.

5.
Circulation ; 125(25): 3142-58, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22661514

RESUMO

BACKGROUND: New vessel formation contributes to organ development during embryogenesis and tissue repair in response to mechanical damage, inflammation, and ischemia in adult organisms. Early angiogenesis includes formation of an excessive primitive network that needs to be reorganized into a secondary vascular network with higher hierarchical structure. Vascular pruning, the removal of aberrant neovessels by apoptosis, is a vital step in this process. Although multiple molecular pathways for early angiogenesis have been identified, little is known about the genetic regulators of secondary network development. METHODS AND RESULTS: Using a transcriptomics approach, we identified a new endothelial specific gene named FYVE, RhoGEF, and PH domain-containing 5 (FGD5) that plays a crucial role in vascular pruning. Loss- and gain-of-function studies demonstrate that FGD5 inhibits neovascularization, indicated by in vitro tube-formation, aortic-ring, and coated-bead assays and by in vivo coated-bead plug assays and studies in the murine retina model. FGD5 promotes apoptosis-induced vaso-obliteration via induction of the hey1-p53 pathway by direct binding and activation of cdc42. Indeed, FGD5 correlates with apoptosis in endothelial cells during vascular remodeling and was linked to rising p21(CIP1) levels in aging mice. CONCLUSION: We have identified FGD5 as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Endotélio Vascular/patologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neovascularização Patológica/genética , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Transcriptoma/genética
6.
Circulation ; 126(4): 468-78, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22705887

RESUMO

BACKGROUND: Vascular dysfunction in atherosclerosis and diabetes mellitus, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. METHODS AND RESULTS: In mice with genomic instability resulting from the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1(d/-) and Xpd(TTD) mice), we explored age-dependent vascular function compared with that in wild-type mice. Ercc1(d/-) mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness, and elevated blood pressure at a very young age. The vasodilator dysfunction was due to decreased endothelial nitric oxide synthase levels and impaired smooth muscle cell function, which involved phosphodiesterase activity. Similar to Ercc1(d/-) mice, age-related endothelium-dependent vasodilator dysfunction in Xpd(TTD) animals was increased. To investigate the implications for human vascular disease, we explored associations between single-nucleotide polymorphisms of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium and found a significant association of a single-nucleotide polymorphism (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. CONCLUSIONS: Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans but with an accelerated progression compared with wild-type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness, which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Reparo do DNA/fisiologia , Endotélio Vascular/fisiopatologia , Instabilidade Genômica/fisiologia , Rigidez Vascular/fisiologia , Animais , Pressão Sanguínea/fisiologia , Artérias Carótidas/fisiopatologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endotélio Vascular/patologia , Artéria Femoral/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Animais , Polimorfismo de Nucleotídeo Único/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
7.
Circ Res ; 109(4): 382-95, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21700929

RESUMO

RATIONALE: Neovascularization is required for embryonic development and plays a central role in diseases in adults. In atherosclerosis, the role of neovascularization remains to be elucidated. In a genome-wide microarray-screen of Flk1+ angioblasts during murine embryogenesis, the v-ets erythroblastosis virus E26 oncogene homolog 2 (Ets2) transcription factor was identified as a potential angiogenic factor. OBJECTIVES: We assessed the role of Ets2 in endothelial cells during atherosclerotic lesion progression toward plaque instability. METHODS AND RESULTS: In 91 patients treated for carotid artery disease, Ets2 levels showed modest correlations with capillary growth, thrombogenicity, and rising levels of tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1, and interleukin-6 in the atherosclerotic lesions. Experiments in ApoE(-/-) mice, using a vulnerable plaque model, showed that Ets2 expression was increased under atherogenic conditions and was augmented specifically in the vulnerable versus stable lesions. In endothelial cell cultures, Ets2 expression and activation was responsive to the atherogenic cytokine TNFα. In the murine vulnerable plaque model, overexpression of Ets2 promoted lesion growth with neovessel formation, hemorrhaging, and plaque destabilization. In contrast, Ets2 silencing, using a lentiviral shRNA construct, promoted lesion stabilization. In vitro studies showed that Ets2 was crucial for TNFα-induced expression of monocyte chemoattractant protein 1, interleukin-6, and vascular cell adhesion molecule 1 in endothelial cells. In addition, Ets2 promoted tube formation and amplified TNFα-induced loss of vascular endothelial integrity. Evaluation in a murine retina model further validated the role of Ets2 in regulating vessel inflammation and endothelial leakage. CONCLUSIONS: We provide the first evidence for the plaque-destabilizing role of Ets2 in atherosclerosis development by induction of an intraplaque proinflammatory phenotype in endothelial cells.


Assuntos
Doenças da Aorta/metabolismo , Doenças das Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Análise de Variância , Animais , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Hemorragia/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica , Fenótipo , Proteína Proto-Oncogênica c-ets-2/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Ruptura , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 32(8): 1960-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22652603

RESUMO

OBJECTIVE: Activated mast cells (MCs) release chymase, which can induce vascular smooth muscle cell (VSMC) apoptosis leading to plaque destabilization. Because the mechanism through which MCs release chymase in atherosclerosis is unknown, we studied whether MC-associated VSMC apoptosis is regulated by toll-like receptor 4 (TLR4) signaling. METHODS AND RESULTS: Local recruitment and activation of MCs reduced VSMC content specifically in the cap region of vulnerable plaques in apolipoprotein E knockout mice. Cotreatment with the TLR4 antagonist Bartonella quintana lipopolysaccharide prevented this VSMC loss, suggesting an important role for TLR4 signaling in MC-induced VSMC apoptosis. Coculture of VSMCs with MCs activated by the TLR4 agonist Escherichia coli lipopolysaccharide increased VSMC apoptosis. Apoptosis was inhibited by TLR4 and chymase blockers, indicating that TLR4 signaling is involved in chymase release in MCs. This pathway was mediated via interleukin-6 because interleukin-6 promoted MC-associated VSMC apoptosis, which was inhibited by blocking chymase release. In addition, TLR4 activation in MCs induced interleukin-6 production, which was reduced by preincubation with either B. quintana lipopolysaccharide or an anti-TLR4 antibody. CONCLUSIONS: We show that MCs promote VSMC apoptosis in vivo. In addition, TLR4 signaling is important in chymase release in MCs and, therefore, in plaque destabilization by regulating VSMC apoptosis.


Assuntos
Apoptose , Mastócitos/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Placa Aterosclerótica/etiologia , Receptor 4 Toll-Like/fisiologia , Animais , Aterosclerose/etiologia , Movimento Celular , Quimases/metabolismo , Feminino , Interleucina-6/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
9.
Arterioscler Thromb Vasc Biol ; 32(5): 1289-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22426130

RESUMO

OBJECTIVE: In cardiovascular regulation, heme oxygenase-1 (HO-1) activity has been shown to inhibit vascular smooth muscle cell (VSMC) proliferation by promoting cell cycle arrest at the G1/S phase. However, the effect of HO-1 on VSMC migration remains unclear. We aim to elucidate the mechanism by which HO-1 regulates PDGFBB-induced VSMC migration. METHODS AND RESULTS: Transduction of HO-1 cDNA adenoviral vector severely impeded human VSMC migration in a scratch, transmembrane, and directional migration assay in response to PDGFBB stimulation. Similarly, HO-1 overexpression in the remodeling process during murine retinal vasculature development attenuated VSMC coverage over the major arterial branches as compared with sham vector-transduced eyes. HO-1 expression in VSMCs significantly upregulated VEGFA and VEGFR2 expression, which subsequently promoted the formation of inactive PDGFRß/VEGFR2 complexes. This compromised PDGFRß phosphorylation and impeded the downstream cascade of FAK-p38 signaling. siRNA-mediated silencing of VEGFA or VEGFR2 could reverse the inhibitory effect of HO-1 on VSMC migration. CONCLUSIONS: These findings identify a potent antimigratory function of HO-1 in VSMCs, a mechanism that involves VEGFA and VEGFR2 upregulation, followed by assembly of inactive VEGFR2/PDGFRß complexes that attenuates effective PDGFRß signaling.


Assuntos
Heme Oxigenase-1/farmacologia , Músculo Liso Vascular/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regulação para Cima/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Movimento Celular , Proliferação de Células , Heme Oxigenase-1/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
10.
Eur Heart J ; 33(1): 120-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21733913

RESUMO

AIMS: The Genous™ Bio-engineered R™ stent (GS) aims to promote vascular healing by capture of circulatory endothelial progenitor cells (EPCs) to the surface of the stent struts, resulting in accelerated re-endothelialization. Here, we assessed the function of the GS in comparison to bare-metal stent (BMS), when exposed to the human and animal circulation. METHODS AND RESULTS: First, 15 patients undergoing coronary angiography received an extracorporeal femoral arteriovenous (AV) shunt containing BMS and GS. Macroscopical mural thrombi were observed in BMS, whereas GS remained visibly clean. Confocal and scanning electron microscopic (SEM) analysis of GS showed an increase in strut coverage. Quantitative polymerase chain reaction (qPCR) analysis of captured cells on the GS demonstrated increased expression of endothelial markers KDR/VEGFR2 and E-selectin, and a decrease in pro-thrombogenic markers tissue factor pathway inhibitor and plasminogen activator inhibitor-1 compared with BMS. Secondly, a similar primate AV shunt model was used to validate these findings and occlusion of BMS was observed, while GS remained patent, as demonstrated by live imaging of indium-labelled platelets. Thirdly, in an in vitro cell-capture assay, GS struts showed increased coverage by EPCs, whereas monocyte coverage remained similar to BMS. Finally, the assessment of re-endothelialization was studied in a rabbit denudation model. Twenty animals received BMS and GS in the aorta and iliac arteries for 7 days. Scanning electron microscopic analysis showed a trend towards increased strut coverage, confirmed by qPCR analysis revealing increased levels of endothelial markers (Tie2, CD34, PCD31, and P-selectin) in GS. CONCLUSION: In this proof-of-concept study, we have demonstrated that the bio-engineered EPC-capture stent, Genous™ R™ stent, is effective in EPC capture, resulting in accelerated re-endothelialization and reduced thrombogenicity.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Bioengenharia , Doença da Artéria Coronariana/terapia , Células Endoteliais/fisiologia , Células-Tronco/fisiologia , Stents , Idoso , Angioplastia Coronária com Balão/métodos , Animais , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Cateterismo Cardíaco/métodos , Reestenose Coronária/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/citologia , Feminino , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Papio , Adesividade Plaquetária/fisiologia , Coelhos
11.
Am J Pathol ; 178(1): 55-60, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21224043

RESUMO

Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease.


Assuntos
Aterosclerose/terapia , Terapia Genética/métodos , Isquemia/terapia , Monócitos/enzimologia , Monócitos/transplante , Neovascularização Fisiológica/genética , Óxido Nítrico Sintase Tipo III/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/fisiopatologia , Membro Posterior/irrigação sanguínea , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos
12.
Circ Res ; 106(10): 1656-66, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20378852

RESUMO

RATIONALE: Heme oxygenase (HO)1 is an important modulator of physiological function with cytoprotective properties. Although HO1 has previously been associated with an improved survival of the vascular allograft in rat models in response to pharmaceutical induction of HO1 the exact mechanism by which HO1 exerts it protective function remains to be elucidated. OBJECTIVE: We sought to define the role of HO1 in dendritic cells (DCs) function that governs the alloimmune response underlying the development of transplantation associated vasculopathy. METHODS AND RESULTS: Loss of HO1 in DCs or by small interfering RNA silencing resulted in major histocompatibility complex class II (MHCII) upregulation by CIITA- driven transcriptional regulation and by STAT1 (signal transducers and activators of transcription 1) phosphorylation. As a result, increased MHCII alloantigen presentation by HO1(-/-) DCs directed the primary T-cell response preferentially toward a CD4(+) T-cell, rather than a CD8(+) T-cell reaction. In a murine model for transplantation arteriosclerosis, adoptive transfer of HO1(-/-) DCs before allograft transplantation was indeed associated with pronounced intragraft CD4(+) T-cell infiltration and increased IgG deposition, suggestive of an accelerated development of vasculopathy toward the chronic phase. The role of HO1 in DC-mediated T cell activation was further validated by inhibition of endogenous HO1 in allograft recipients. Inhibition of HO1 in DCs aggravated transplant arteriosclerosis development, by increasing intima hyperplasia, and by activation of a CD4(+) T cells allograft response, mediated by MHCII upregulation. CONCLUSIONS: These findings demonstrate that HO1 plays an important role in the genetic regulation of the vascular alloimmune response elicited by DCs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Heme Oxigenase-1/metabolismo , Animais , Cruzamentos Genéticos , Células Dendríticas/enzimologia , Inativação Gênica , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Humanos , Imunoglobulina G/metabolismo , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Ratos , Transplante Homólogo/imunologia
13.
Curr Drug Targets ; 23(14): 1345-1369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959619

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE: In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION: While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.


Assuntos
Aterosclerose , Humanos , Oncostatina M/uso terapêutico , Oncostatina M/metabolismo , Oncostatina M/farmacologia , Aterosclerose/tratamento farmacológico , Ligação Proteica , Interleucina-6/metabolismo , Medição de Risco
14.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740520

RESUMO

Background: The current standard of care for patients without sentinel node (SN) metastasis (i.e., stage I−II melanoma) is watchful waiting, while >40% of patients with stage IB−IIC will eventually present with disease recurrence or die as a result of melanoma. With the prospect of adjuvant therapeutic options for patients with a negative SN, we assessed the performance of a clinicopathologic and gene expression (CP-GEP) model, a model originally developed to predict SN metastasis, to identify patients with stage I−II melanoma at risk of disease relapse. Methods: This study included patients with cutaneous melanoma ≥18 years of age with a negative SN between October 2006 and December 2017 at the Sahlgrenska University Hospital (Sweden) and Erasmus MC Cancer Institute (The Netherlands). According to the CP-GEP model, which can be applied to the primary melanoma tissue, the patients were stratified into high or low risk of recurrence. The primary aim was to assess the 5-year recurrence-free survival (RFS) of low- and high-risk CP-GEP. A secondary aim was to compare the CP-GEP model with the EORTC nomogram, a model based on clinicopathological variables only. Results: In total, 535 patients (stage I−II) were included. CP-GEP stratification among these patients resulted in a 5-year RFS of 92.9% (95% confidence interval (CI): 86.4−96.4) in CP-GEP low-risk patients (n = 122) versus 80.7% (95%CI: 76.3−84.3) in CP-GEP high-risk patients (n = 413; hazard ratio 2.93 (95%CI: 1.41−6.09), p < 0.004). According to the EORTC nomogram, 25% of the patients were classified as having a 'low risk' of recurrence (96.8% 5-year RFS (95%CI 91.6−98.8), n = 130), 49% as 'intermediate risk' (88.4% 5-year RFS (95%CI 83.6−91.8), n = 261), and 26% as 'high risk' (61.1% 5-year RFS (95%CI 51.9−69.1), n = 137). Conclusion: In these two independent European cohorts, the CP-GEP model was able to stratify patients with stage I−II melanoma into two groups differentiated by RFS.

15.
Int J Dermatol ; 60(7): 851-856, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33914348

RESUMO

BACKGROUND: Approximately 85% of melanoma patients who undergo a sentinel lymph node biopsy (SLNB) are node-negative. Melanoma incidence is highest in patients ≥65 years, but their SLNB positivity rate is lower than in younger patients. CP-GEP, a model combining clinicopathologic and gene expression variables, identifies primary cutaneous melanoma (CM) patients who may safely forgo SLNB due to their low risk for nodal metastasis. Here, we validate CP-GEP in a U.S. melanoma patient cohort. METHODS: A cohort of 208 adult patients with primary CM from the Mayo Clinic and West Virginia University was used. Patients were stratified according to their risk for nodal metastasis: CP-GEP High Risk and CP-GEP Low Risk. The main performance measures were SLNB reduction rate (RR) and negative predictive value (NPV). RESULTS: SLNB positivity rate for the entire cohort was 21%. Most patients had a T1b (34%) or T2a (31%) melanoma. In the T1-T2 group (153 patients), CP-GEP achieved an SLNB RR of 41.8% (95% CI: 33.9-50.1) at an NPV of 93.8% (95% CI: 84.8-98.3). Subgroup analysis showed similar performance in T1-T2 patients ≥65 years of age (51 patients; SLNB positivity rate, 9.8%): SLNB RR of 43.1% (95% CI: 29.3-57.8) at an NPV of 95.5% (95% CI: 77.2-99.9). CONCLUSION: We confirmed the potential of CP-GEP to reduce negative SLNB in all relevant age groups. Our findings are especially relevant to patients ≥65 years, where surgery is often elective. CP-GEP may guide SLNB decision-making in clinical practice.


Assuntos
Melanoma , Neoplasias Cutâneas , Adulto , Estudos de Coortes , Humanos , Metástase Linfática , Melanoma/cirurgia , Neurofibromina 2 , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/cirurgia
16.
Front Cardiovasc Med ; 8: 658915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959646

RESUMO

Background and Aims: Oncostatin M (OSM) signaling is implicated in atherosclerosis, however the mechanism remains unclear. We investigated the impact of common genetic variants in OSM and its receptors, OSMR and LIFR, on overall plaque vulnerability, plaque phenotype, intraplaque OSMR and LIFR expression, coronary artery calcification burden and cardiovascular disease susceptibility. Methods and Results: We queried Genotype-Tissue Expression data and found that rs13168867 (C allele) was associated with decreased OSMR expression and that rs10491509 (A allele) was associated with increased LIFR expression in arterial tissues. No variant was significantly associated with OSM expression. We associated these two variants with plaque characteristics from 1,443 genotyped carotid endarterectomy patients in the Athero-Express Biobank Study. After correction for multiple testing, rs13168867 was significantly associated with an increased overall plaque vulnerability (ß = 0.118 ± s.e. = 0.040, p = 3.00 × 10-3, C allele). Looking at individual plaque characteristics, rs13168867 showed strongest associations with intraplaque fat (ß = 0.248 ± s.e. = 0.088, p = 4.66 × 10-3, C allele) and collagen content (ß = -0.259 ± s.e. = 0.095, p = 6.22 × 10-3, C allele), but these associations were not significant after correction for multiple testing. rs13168867 was not associated with intraplaque OSMR expression. Neither was intraplaque OSMR expression associated with plaque vulnerability and no known OSMR eQTLs were associated with coronary artery calcification burden, or cardiovascular disease susceptibility. No associations were found for rs10491509 in the LIFR locus. Conclusions: Our study suggests that rs1316887 in the OSMR locus is associated with increased plaque vulnerability, but not with coronary calcification or cardiovascular disease risk. It remains unclear through which precise biological mechanisms OSM signaling exerts its effects on plaque morphology. However, the OSM-OSMR/LIFR pathway is unlikely to be causally involved in lifetime cardiovascular disease susceptibility.

17.
J Mol Cell Cardiol ; 48(6): 1041-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20153335

RESUMO

Exercise training attenuates left ventricular (LV) dysfunction after myocardial infarction (MI). It could be speculated that these effects of exercise are mediated by increased endothelial NO synthase (eNOS) activity. In the present study we tested the hypothesis that eNOS plays a critical role in the exercise-induced amelioration of LV dysfunction after MI. MI or sham was induced in eNOS(-/-), eNOS(+/-) and eNOS(+/+) mice. After 8 weeks of voluntary wheel running (approximately 7 km/day in all groups) or sedentary housing, global cardiac function was determined in vivo and (immuno)histochemistry was performed to assess cardiomyocyte size, fibrosis, capillary density and apoptosis in remote myocardium. At baseline eNOS(-/-) mice had higher mean aortic pressure compared to eNOS(+/-) and eNOS(+/+) mice, but had normal global cardiac function. MI resulted in marked LV remodeling, including cardiomyocyte hypertrophy and a reduction in capillary density, increased fibrosis and apoptosis, as well as LV systolic and diastolic dysfunction to the same extent in all genotypes. In eNOS(+/+) MI mice exercise abolished fibrosis and apoptosis in the remote myocardium, attenuated LV systolic dysfunction and ameliorated pulmonary congestion. These beneficial effects were lost in eNOS(+/-) and eNOS(-/-) mice, while LV systolic dysfunction and pulmonary congestion in eNOS(+/-) mice were exacerbated by exercise. In conclusion, the beneficial effects of exercise after MI on LV remodeling and dysfunction depend critically on endogenous eNOS. The observation that the lack of one eNOS allele is sufficient to negate all beneficial effects of exercise, strongly suggests that exercise depends on full eNOS expression.


Assuntos
Regulação Enzimológica da Expressão Gênica , Infarto do Miocárdio/reabilitação , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Condicionamento Físico Animal , Animais , Apoptose , Capilares/patologia , Colágeno/química , Feminino , Ventrículos do Coração/patologia , Humanos , Hipertrofia , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio
18.
J Clin Invest ; 117(3): 616-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17304353

RESUMO

We previously found that low shear stress (LSS) induces atherosclerotic plaques in mice with increased lipid and matrix metalloproteinase content and decreased vascular smooth muscle and collagen content. Here, we evaluated the role of chemokines in this process, using an extravascular device inducing regions of LSS, high shear stress, and oscillatory shear stress (OSS) in the carotid artery. One week of shear stress alterations induced expression of IFN-gamma-inducible protein-10 (IP-10) exclusively in the LSS region, whereas monocyte chemoattractant protein-1 (MCP-1) and the mouse homolog of growth-regulated oncogene alpha (GRO-alpha) were equally upregulated in both LSS and OSS regions. After 3 weeks, GRO-alpha and IP-10 were specifically upregulated in LSS regions. After 9 weeks, lesions with thinner fibrous caps and larger necrotic cores were found in the LSS region compared with the OSS region. Equal levels of MCP-1 expression were observed in both regions, while expression of fractalkine was found in the LSS region only. Blockage of fractalkine inhibited plaque growth and resulted in striking differences in plaque composition in the LSS region. We conclude that LSS or OSS triggers expression of chemokines involved in atherogenesis. Fractalkine upregulation is critically important for the composition of LSS-induced atherosclerotic lesions.


Assuntos
Aterosclerose/etiologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/etiologia , Quimiocinas/fisiologia , Resistência ao Cisalhamento , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Receptor 1 de Quimiocina CX3C , Artérias Carótidas/química , Doenças das Artérias Carótidas/patologia , Quimiocinas/genética , Expressão Gênica , Camundongos , Camundongos Mutantes , Receptores de Citocinas/análise , Receptores de HIV/análise , Estresse Mecânico
19.
Cardiovasc Res ; 78(1): 123-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18079107

RESUMO

AIMS: Studies in animals and patients indicate that rapamycin affects vasodilatation differently in outer and inner curvatures of blood vessels. We evaluated in this study whether rapamycin affects endothelial nitric oxide synthase (eNOS) responsiveness to shear stress under normo- and hypercholesteraemic conditions to explain these findings. METHODS AND RESULTS: Shear stress levels were varied over a large range of values in carotid arteries of transgenic mice expressing human eNOS fused to enhanced green fluorescence protein. The mice were divided into control, low-dose rapamycin (3 microg/kg/day), and high-dose rapamycin (3 mg/kg/day) groups and into normocholesteraemic and hypercholesteraemic (ApoE-/- on high cholesterol diet for 3-4 weeks) groups. The effect of rapamycin treatment on eNOS was evaluated by quantification of eNOS expression and of intracellular protein levels by en face confocal microscopy. A sigmoid curve fit was used to described these data. The efficacy of treatment was confirmed by measurement of rapamycin serum levels (2.0 +/- 0.5 ng/mL), and of p27kip1 expression in vascular tissue (increased by 2.4 +/- 0.5-fold). In control carotid arteries, eNOS expression increased by 1.8 +/- 0.3-fold in response to rapamycin. In the treated vessels, rapamycin reduced maximal eNOS expression at high shear stress levels (>5 Pa) in a dose-dependent way and shifted the sigmoid curve to the right. Hypercholesteraemia had a tendency to increase the leftward shift and the reduction in maximal eNOS expression (P = 0.07). CONCLUSION: Rapamycin is associated with high eNOS in low shear regions, i.e. in atherogenic regions, protecting these regions against atherosclerosis, and is associated with a reduction of eNOS at high shear stress affecting vasomotion in these regions.


Assuntos
Fármacos Cardiovasculares/farmacologia , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Sirolimo/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Fármacos Cardiovasculares/sangue , Artérias Carótidas/enzimologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/fisiopatologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/enzimologia , Hipercolesterolemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Óxido Nítrico Sintase Tipo III/genética , Fluxo Pulsátil , Proteínas Recombinantes de Fusão/metabolismo , Sirolimo/sangue , Estresse Mecânico
20.
PLoS One ; 14(8): e0221477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461490

RESUMO

OBJECTIVE: Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and other chronic inflammatory diseases for which inhibitory antibodies are in development. However, to date no intervention studies with OSM have been performed, and its relation to coronary heart disease (CHD) has not been studied. APPROACH AND RESULTS: Gene expression analysis on human normal arteries (n = 10) and late stage/advanced carotid atherosclerotic arteries (n = 127) and in situ hybridization on early human plaques (n = 9) showed that OSM, and its receptors, OSM receptor (OSMR) and Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and atherosclerotic plaques. Chronic OSM administration in APOE*3Leiden.CETP mice (n = 15/group) increased plasma E-selectin levels and monocyte adhesion to the activated endothelium independently of cholesterol but reduced the amount of inflammatory Ly-6CHigh monocytes and atherosclerotic lesion size and severity. Using aptamer-based proteomics profiling assays high circulating OSM levels were shown to correlate with post incident CHD survival probability in the AGES-Reykjavik study (n = 5457). CONCLUSIONS: Chronic OSM administration in APOE*3Leiden.CETP mice reduced atherosclerosis development. In line, higher serum OSM levels were correlated with improved post incident CHD survival probability in patients, suggesting a protective cardiovascular effect.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Oncostatina M/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/genética , Biomarcadores/metabolismo , Doença das Coronárias/sangue , Doença das Coronárias/genética , Doença das Coronárias/mortalidade , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/patologia , Interleucina-6/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Camundongos Transgênicos , Monócitos/patologia , Oncostatina M/sangue , Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Probabilidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA