Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1428234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933460

RESUMO

Cotton, a crucial economic crop, is also the preferred host plant of the mirid bug Apolygus lucorum. In our previous field experiments, we found that cotton cultivars Kelin 08-15 and BR-S-10 (healthy and herbivore-damaged plants) exhibit distinct attraction and repellence to A. lucorum, respectively. However, the key plant volatiles determining attraction or repulsion effects remain unknown. Here, we investigated the volatiles emitted by these two cotton cultivars before and after herbivore infestation. We found that susceptible Kelin 08-15 emitted a greater diversity and quantity of volatiles than those of BR-S-10, with herbivore-damaged cottons releasing more volatile substances. Electroantennogram (EAG) recordings further revealed that 15 representative volatiles identified above could elicited electrophysiological responses in female and male A. lucorum antennae. Among them, behavioral assays showed that two compounds, 1,3-Diethylbenzene and 4-Ethylbenzaldehyde, exhibited attractive properties, whereas six volatiles including Hexyl Acrylate, Cumene, 2,4-Dimethylstyrene, Eucalyptol, Linalool and Butyl Acrylate demonstrated repellent effects on A. lucorum. Taken together, our findings suggest the critical role of volatile compounds in mediating bug-plant interactions and provide a foundation for the development of strategies to prevent and control of A. lucorum in cotton fields.

2.
J Adv Res ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38806097

RESUMO

INTRODUCTION: As an important herbivore-induced plant volatile, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is known for its defensive role against multiple insect pests, including attracting natural enemies. A terpene synthase (GhTPS14) and two cytochrome P450 (GhCYP82L1, GhCYP82L2) enzymes are involved in the de novo synthesis of DMNT in cotton. We conducted a study to test the potential of manipulating DMNT-synthesizing enzymes to enhance plant resistance to insects. OBJECTIVES: To manipulate DMNT emissions in cotton and generate cotton lines with increased resistance to mirid bug Apolygus lucorum. METHODS: Biosynthesis and emission of DMNT by cotton plants were altered using CRISPR/Cas9 and overexpression approaches. Dynamic headspace sampling and GC-MS analysis were used to collect, identify and quantify volatiles. The attractiveness and suitability of cotton lines against mirid bug and its parasitoid Peristenus spretus were evaluated through various assays. RESULTS: No DMNT emission was detected in knockout CAS-L1L2 line, where both GhCYP82L1 and GhCYP82L2 were knocked out. In contrast, gene-overexpressed lines released higher amounts of DMNT when infested by A. lucorum. At the flowering stage, L114 (co-overexpressing GhCYP82L1 and GhTPS14) emitted 10-15-fold higher amounts than controls. DMNT emission in overexpressed transgenic lines could be triggered by methyl jasmonate (MeJA) treatment. Apolygus lucorum and its parasitoid were far less attracted to the double edited CAS-L1L2 plants, however, co-overexpressed line L114 significantly attracted bugs and female wasps. A high dose of DMNT, comparable to the emission of L114, significantly inhibited the growth of A. lucorum, and further resulted in higher mortalities. CONCLUSION: Turning down DMNT emission attenuated the behavioral preferences of A. lucorum to cotton. Genetically modified cotton plants with elevated DMNT emission not only recruited parasitoids to enhance indirect defense, but also formed an ecological trap to kill the bugs. Therefore, manipulation of DMNT biosynthesis and emission in plants presents a promising strategy for controlling mirid bugs.

3.
Front Plant Sci ; 14: 1326630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173929

RESUMO

The Aphis gossypii is a major threat of cotton worldwide due to its short life cycle and rapid reproduction. Chemical control is the primary method used to manage the cotton aphid, which has significant environmental impacts. Therefore, prioritizing eco-friendly alternatives is essential for managing the cotton aphid. The ladybird, Hippodamia variegata, is a predominant predator of the cotton aphid. Its performance in cotton plantation is directly linked to chemical communication, where volatile compounds emitted from aphid-infested plants play important roles in successful predation. Here, we comprehensively studied the chemical interaction between the pest, natural enemy and host plants by analyzing the volatile profiles of aphid-infested cotton plants using gas chromatography-mass spectrometry (GC-MS). We then utilized the identified volatile compounds in electrophysiological recording (EAG) and behavioral assays. Through behavioral tests, we initially demonstrated the clear preference of both larvae and adults of H. variegata for aphid-infested plants. Subsequently, 13 compounds, namely α-pinene, cis-3-hexenyl acetate, 4-ethyl-1-octyn-3-ol, ß-ocimene, dodecane, E-ß-farnesene, decanal, methyl salicylate, ß-caryophyllene, α-humulene, farnesol, DMNT, and TMTT were identified from aphid-infested plants. All these compounds were electrophysiologically active and induced detectable EAG responses in larvae and adults. Y-tube olfactometer assays indicated that, with few exceptions for larvae, all identified chemicals were attractive to H. variegata, particularly at the highest tested concentration (100 mg/ml). The outcomes of this study establish a practical foundation for developing attractants for H. variegata and open avenues for potential advancements in aphid management strategies by understanding the details of chemical communication at a tritrophic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA