Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1892-1912, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262703

RESUMO

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/genética , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amilopectina/metabolismo , Mutação , Plantas Geneticamente Modificadas
2.
Plant Cell ; 35(8): 2871-2886, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195873

RESUMO

Plants have evolved sophisticated mechanisms to coordinate their growth and stress responses via integrating various phytohormone signaling pathways. However, the precise molecular mechanisms orchestrating integration of the phytohormone signaling pathways remain largely obscure. In this study, we found that the rice (Oryza sativa) short internodes1 (shi1) mutant exhibits typical auxin-deficient root development and gravitropic response, brassinosteroid (BR)-deficient plant architecture and grain size as well as enhanced abscisic acid (ABA)-mediated drought tolerance. Additionally, we found that the shi1 mutant is also hyposensitive to auxin and BR treatment but hypersensitive to ABA. Further, we showed that OsSHI1 promotes the biosynthesis of auxin and BR by activating the expression of OsYUCCAs and D11, meanwhile dampens ABA signaling by inducing the expression of OsNAC2, which encodes a repressor of ABA signaling. Furthermore, we demonstrated that 3 classes of transcription factors, AUXIN RESPONSE FACTOR 19 (OsARF19), LEAF AND TILLER ANGLE INCREASED CONTROLLER (LIC), and OsZIP26 and OsZIP86, directly bind to the promoter of OsSHI1 and regulate its expression in response to auxin, BR, and ABA, respectively. Collectively, our results unravel an OsSHI1-centered transcriptional regulatory hub that orchestrates the integration and self-feedback regulation of multiple phytohormone signaling pathways to coordinate plant growth and stress adaptation.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Brassinosteroides/metabolismo , Hormônios , Crescimento e Desenvolvimento , Regulação da Expressão Gênica de Plantas
3.
J Integr Plant Biol ; 65(3): 755-771, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36333887

RESUMO

Most of the reported P-type pentatricopeptide repeat (PPR) proteins play roles in organelle RNA stabilization and splicing. However, P-type PPRs involved in both RNA splicing and editing have rarely been reported, and their underlying mechanism remains largely unknown. Here, we report a rice floury endosperm22 (flo22) mutant with delayed amyloplast development in endosperm cells. Map-based cloning and complementation tests demonstrated that FLO22 encodes a mitochondrion-localized P-type PPR protein. Mutation of FLO22 resulting in defective trans-splicing of mitochondrial nad1 intron 1 and perhaps causing instability of mature transcripts affected assembly and activity of complex Ⅰ, and mitochondrial morphology and function. RNA-seq analysis showed that expression levels of many genes involved in starch and sucrose metabolism were significantly down-regulated in the flo22 mutant compared with the wild type, whereas genes related to oxidative phosphorylation and the tricarboxylic acid cycle were significantly up-regulated. In addition to involvement in splicing as a P-type PPR protein, we found that FLO22 interacted with DYW3, a DYW-type PPR protein, and they may function synergistically in mitochondrial RNA editing. The present work indicated that FLO22 plays an important role in endosperm development and plant growth by participating in nad1 maturation and multi-site editing of mitochondrial messager RNA.


Assuntos
Endosperma , Oryza , RNA Mitocondrial/metabolismo , Endosperma/metabolismo , Oryza/genética , Splicing de RNA , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Biotechnol J ; 20(3): 437-453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655511

RESUMO

Starch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis. We identified the floury endosperm19 (flo19) mutant which shows opaque of the interior endosperm. Abnormal compound starch grains (SGs) were present in the endosperm cells of the mutant. Molecular cloning revealed that the FLO19 allele encodes a plastid-localized pyruvate dehydrogenase complex E1 component subunit α1 (ptPDC-E1-α1) that is expressed in all rice tissues. In vivo enzyme assays demonstrated that the flo19 mutant showed decreased activity of the plastidic pyruvate dehydrogenase complex. In addition, the amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were much lower in the developing flo19 mutant endosperm, suggesting that FLO19 participates in fatty acid supply for galactolipid biosynthesis in amyloplasts. FLO19 overexpression significantly increased seed size and weight, but did not affect other important agronomic traits, such as panicle length, tiller number and seed setting rate. An analysis of single nucleotide polymorphism data from a panel of rice accessions identified that the pFLO19L haplotype was positively associated with grain length, implying a potential application in rice breeding. In summary, our study demonstrates that FLO19 is involved in galactolipid biosynthesis which is essential for amyloplast development and starch biosynthesis in rice.


Assuntos
Oryza , Grão Comestível , Endosperma/metabolismo , Galactolipídeos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Complexo Piruvato Desidrogenase , Amido/metabolismo
5.
Plant Physiol ; 187(4): 2192-2208, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624820

RESUMO

Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.


Assuntos
Glutens/metabolismo , Oryza/genética , Oryza/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Sementes/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glutens/genética , Mutação , Isoformas de Proteínas/genética , Sementes/genética , Proteínas de Transporte Vesicular/genética
6.
New Phytol ; 229(5): 2693-2706, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33119889

RESUMO

Thioredoxins (TRXs) occur in plant chloroplasts as complex disulphide oxidoreductases. Although many biological processes are regulated by thioredoxins, the regulatory mechanism of chloroplast TRXs are largely unknown. Here we report a rice white panicle2 mutant caused by a mutation in the thioredoxin z gene, an orthologue of AtTRX z in Arabidopsis. white panicle2 (wp2) seedlings exhibited a high-temperature-sensitive albinic phenotype. We found that plastid multiple organellar RNA editing factors (MORFs) were the regulatory targets of thioredoxin z. We showed that OsTRX z protein physically interacts with OsMORFs in a redox-dependent manner and that the redox state of a conserved cysteine in the MORF box is essential for MORF-MORF interactions. wp2 and OsTRX z knockout lines show reduced editing efficiencies in many plastidial-encoded genes especially under high-temperature conditions. An Arabidopsis trx z mutant also exhibited significantly reduced chloroplast RNA editing. Our combined results suggest that thioredoxin z regulates chloroplast RNA editing in plants by controlling the redox state of MORFs.


Assuntos
Oryza , Proteínas de Plantas , Plastídeos , Edição de RNA , Tiorredoxinas , Cloroplastos/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
J Integr Plant Biol ; 63(5): 865-877, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33615714

RESUMO

A series of nucleotide sugar interconversion enzymes (NSEs) generate the activated sugar donors required for biosynthesis of cell wall matrix polysaccharides and glycoproteins. UDP-glucose 4-epimerases (UGEs) are NSEs that function in the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). The roles of UDP-glucose 4-epimerases in monocots remain unclear due to redundancy in the pathways. Here, we report a brittle plant (bp1) rice mutant that exhibits brittle leaves and culms at all growth stages. The mutant culms had reduced levels of rhamnogalacturonan I, homogalacturonan, and arabinogalactan proteins. Moreover, the mutant had altered contents of uronic acids, neutral noncellulosic monosaccharides, and cellulose. Map-based cloning demonstrated that OsBP1 encodes a UDP-glucose 4-epimerase (OsUGE2), a cytosolic protein. We also show that BP1 can form homo- and hetero-protein complexes with other UGE family members and with UDP-galactose transporters 2 (OsUGT2) and 3 (OsUGT3), which may facilitate the channeling of Gal to polysaccharides and proteoglycans. Our results demonstrate that BP1 participates in regulating the sugar composition and structure of rice cell walls.


Assuntos
Parede Celular/metabolismo , Mucoproteínas/metabolismo , Oryza/metabolismo , UDPglucose 4-Epimerase/metabolismo , Regulação da Expressão Gênica de Plantas , Mucoproteínas/genética , Oryza/genética , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , UDPglucose 4-Epimerase/genética
8.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2245-2253, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34047127

RESUMO

Schisandrae Chinensis Fructus in six growth stages was taken as materials to study the species and content changes of material basis, which were detected by UPLC, GC and MS chromatography, including lignans, nucleosides, aroma components and fatty acids. The results showed that the texture, color and taste of Schisandrae Chinensis Fructus in six growth stages were different. On the material basis, 12 lignans were detected by UPLC-MS, and the content of total lignans was higher in the samples from late August to early September, among which the highest content of schisandrin was 0.67%±0.01%, followed by schizandrol B, angeloylgomisin H and schisandrin B, and the total content increased with the maturity of Schisandrae Chinensis Fructus. Thirteen kinds of nucleosides were detected by UPLC. The total nucleoside content was the highest in late July samples, in which the contents of uridine and guanosine were higher and decreased after maturity. Aroma components and fatty acids were identified by GC-MS. A total of 53 aroma components were detected and the highest total content was appeared in late August samples, of which ylangene was higher and bergamotene was followed. A total of 24 kinds of fatty acids were detected. The fruits matured basically in August, and the content of fatty acids in the samples was the highest, among which linoleic acid content was top the list and oleic acid was the second. To sum up, the maturity of Schisandra chinensis fruit is related to the content and variety of various material bases, and the growth period has different influences on the quality of Schisandrae Chinensis Fructus. Therefore, the appropriate harvesting time should be determined according to the change law of target components. The results of this study can provide reference for the quality evaluation of Schisandrae Chinensis Fructus material basis.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Schisandra , Cromatografia Líquida , Frutas/química , Lignanas/análise , Espectrometria de Massas em Tandem
9.
BMC Plant Biol ; 19(1): 295, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277576

RESUMO

BACKGROUND: As the major storage protein in rice seeds, glutelins are synthesized at the endoplasmic reticulum (ER) as proglutelins and transported to protein storage vacuoles (PSVs) called PBIIs (Protein body IIs), where they are cleaved into mature forms by the vacuolar processing enzymes. However, the molecular mechanisms underlying glutelin trafficking are largely unknown. RESULTS: In this study, we report a rice mutant, named glutelin precursor accumulation6 (gpa6), which abnormally accumulates massive proglutelins. Cytological analyses revealed that in gpa6 endosperm cells, proglutelins were mis-sorted, leading to the presence of dense vesicles (DVs) and the formation paramural bodies (PMBs) at the apoplast, consequently, smaller PBII were observed. Mutated gene in gpa6 was found to encode a Na+/H+ antiporter, OsNHX5. OsNHX5 is expressed in all tissues analyzed, and its expression level is much higher than its closest paralog OsNHX6. The OsNHX5 protein colocalizes to the Golgi, the trans-Golgi network (TGN) and the pre-vacuolar compartment (PVC) in tobacco leaf epidermal cells. In vivo pH measurements indicated that the lumens of Golgi, TGN and PVC became more acidic in gpa6. CONCLUSIONS: Our results demonstrated an important role of OsNHX5 in regulating endomembrane luminal pH, which is essential for seed storage protein trafficking in rice.


Assuntos
Glutens/metabolismo , Homeostase , Oryza/metabolismo , Endosperma/metabolismo , Complexo de Golgi/fisiologia , Concentração de Íons de Hidrogênio , Transporte Proteico , Vacúolos/metabolismo
10.
Plant Biotechnol J ; 17(10): 1914-1927, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860317

RESUMO

Starch is the most important form of energy storage in cereal crops. Many key enzymes involved in starch biosynthesis have been identified. However, the molecular mechanisms underlying the regulation of starch biosynthesis are largely unknown. In this study, we isolated a novel floury endosperm rice (Oryza sativa) mutant flo16 with defective starch grain (SG) formation. The amylose content and amylopectin structure were both altered in the flo16 mutant. Map-based cloning and complementation tests demonstrated that FLO16 encodes a NAD-dependent cytosolic malate dehydrogenase (CMDH). The ATP contents were decreased in the mutant, resulting in significant reductions in the activity of starch synthesis-related enzymes. Our results indicated that FLO16 plays a critical role in redox homeostasis that is important for compound SG formation and subsequent starch biosynthesis in rice endosperm. Overexpression of FLO16 significantly improved grain weight, suggesting a possible application of FLO16 in rice breeding. These findings provide a novel insight into the regulation of starch synthesis and seed development in rice.


Assuntos
Malato Desidrogenase/genética , Oryza/enzimologia , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Amido/biossíntese , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , NAD , Oryza/genética
11.
New Phytol ; 223(2): 736-750, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916395

RESUMO

Endosperm, the major storage organ in cereal grains, determines grain yield and quality. Despite the fact that a role for P-type pentatricopeptide repeat (PPR) proteins in the regulation of endosperm development has emerged, molecular functions of many P-type PPR proteins remain obscure. Here, we report a rice endosperm defective mutant, floury endosperm10 (flo10), which developed smaller starch grains in starchy endosperm and abnormal cells in the aleurone layer. Map-based cloning and rescued experiments showed that FLO10 encodes a P-type PPR protein with 26 PPR motifs, which is localized to mitochondria. Loss of function of FLO10 affected the trans-splicing of the mitochondrial nad1 intron 1, which was accompanied by the increased accumulation of the nad1 exon 1 and exons 2-5 precursors. The failed formation of mature nad1 led to a dramatically decreased assembly and activity of complex I, reduced ATP production, and changed mitochondrial morphology. In addition, loss of function of FLO10 significantly induced an alternative respiratory pathway involving alternative oxidase. These results reveal that FLO10 plays an important role in the maintenance of mitochondrial function and endosperm development through its effect on the trans-splicing of the mitochondrial nad1 intron 1 in rice.


Assuntos
Endosperma/embriologia , Íntrons/genética , Mitocôndrias/metabolismo , Oryza/embriologia , Oryza/genética , Proteínas de Plantas/genética , Trans-Splicing/genética , Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Mitocôndrias/ultraestrutura , Mutação/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos , Amido/metabolismo
12.
J Exp Bot ; 70(18): 4705-4720, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31087099

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.


Assuntos
Endosperma/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Endosperma/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo
13.
Plant Sci ; 346: 112151, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38848768

RESUMO

Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.


Assuntos
Endosperma , Oryza , Proteínas de Plantas , Splicing de RNA , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/genética , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Mitocondriais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Regulação da Expressão Gênica de Plantas
14.
Plant Commun ; 4(1): 100411, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35836377

RESUMO

Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plastídeos/genética , Arabidopsis/metabolismo , Transdução de Sinais/genética , Tetrapirróis/metabolismo , Expressão Gênica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a DNA/genética
15.
Plant Sci ; 326: 111503, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270512

RESUMO

Starch accounts for about 80-85 % of the dry weight of grains and determines yield by impact on grain weight. And, the content and composition of starch also determine appearance, eating, cooking and nutritional quality of rice. By coordinating crucial reactions of the primary carbohydrate metabolism in all eukaryotes, fructose-2,6-bisphosphate (Fru-2,6-P2) is a traffic signal in metabolism. However, the metabolic regulation of starch in plant sink tissues by Fru-2,6-P2 remains unclear. Here we isolated rice mutant floury endosperm23 (flo23) which has opaque endosperm and anomalous compound starch grains (SGs). flo23 mutant grains had reduced contents of starch, lipids and proteins. Map-based cloning and genetic complementation experiments showed that FLO23 encodes a cytoplasmic Fructose-6-phosphate-2-kinase/Fructose-2,6-bisphosphatase (F2KP). Mutation of OsF2KP2 decreased Fru-2,6-P2 content in endosperm cells, leading to drastically reduced phosphoenolpyruvate (PEP) and pyruvate contents and disordered glycolysis and energy metabolism. The results imply that OsF2KP2 participates in the glycolytic pathway by providing precursors and energy for synthesis of grain storage compounds.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Endosperma/metabolismo , Amido/metabolismo , Fosfotransferases/metabolismo , Grão Comestível/metabolismo , Metabolismo Energético
16.
FEBS Lett ; 596(17): 2215-2230, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35615915

RESUMO

Seed storage proteins (SSPs) accumulated within plant seeds constitute the major protein nutrition sources for human and livestock. SSPs are synthesized on the endoplasmic reticulum and are then deposited in plant-specific protein bodies, including endoplasmic reticulum-derived protein bodies and protein storage vacuoles. Plant seeds have evolved a distinct endomembrane system to accomplish SSP transport. There are two distinct types of trafficking pathways contributing to SSP delivery to protein storage vacuoles: one is Golgi-dependent and the other is Golgi-independent. In recent years, molecular, genetic, and biochemical studies have shed light on the complex network controlling SSP trafficking, to which both evolutionarily conserved molecular machineries and plant-unique regulators contribute. In this review, we discuss current knowledge of protein body biogenesis and endomembrane-mediated SSP transport, focusing on endoplasmic reticulum export and post-Golgi traffic. This knowledge supports a dominant role for the Golgi-dependent pathways in SSP transport in Arabidopsis and rice. In addition, we describe cutting-edge strategies for dissecting the endomembrane trafficking system in plant seeds to advance the field.


Assuntos
Arabidopsis , Complexo de Golgi , Proteínas de Plantas , Transporte Proteico , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Vacúolos/metabolismo
17.
Rice (N Y) ; 14(1): 29, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689034

RESUMO

BACKGROUND: The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown. RESULTS: We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5). In addition to having floury shrunken endosperm, the fse5 seeds either failed to germinate or produced seedlings which grew slowly and died ultimately. Fse5 encodes a putative plant organelle RNA recognition (PORR) protein targeted to mitochondria. Mutation of Fse5 hindered the splicing of the first intron of nad4, which encodes an essential subunit of mitochondrial NADH dehydrogenase complex I. The assembly and NADH dehydrogenase activity of complex I were subsequently disrupted by this mutation, and the structure of the mitochondria was abnormal in the fse5 mutant. The FSE5 protein was shown to interact with mitochondrial intron splicing factor 68 (MISF68), which is also a splicing factor for nad4 intron 1 identified previously via yeast two-hybrid (Y2H) assays. CONCLUSION: Fse5 which encodes a PORR domain-containing protein, is essential for the splicing of nad4 intron 1, and loss of Fse5 function affects seed development and seedling growth.

18.
Plant Sci ; 305: 110831, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691965

RESUMO

Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.


Assuntos
Grão Comestível/metabolismo , Endosperma/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Plastídeos/metabolismo , Amido/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
19.
Plant Sci ; 277: 89-99, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466604

RESUMO

Mutations of stromal Hsp70 cause chloroplast developmental abnormalities and knockout mutants of stromal Hsp70 usually exhibit protein import deficiencies. However, their effects have not been studied in amyloplast development. Here, we identified an amyloplast abnormal development mutant, floury endosperm11 (flo11) that exhibited an opaque phenotype in the inner core and the periphery of grains. Semi-thin section revealed defective amyloplast development in the flo11 endosperm. Map-based cloning and subsequent complementation test demonstrated that FLO11 encoded a plastid-localized heat shock protein 70 (OsHsp70cp-2). OsHsp70cp-2 was abundantly expressed in developing endosperm, whereas its paralogous gene OsHsp70cp-1 was mainly expressed in photosynthetic tissues. Ectopic expression of OsHsp70cp-1 under the control of OsHsp70cp-2 promoter rescued the mutant phenotype of flo11. Moreover, simultaneous knockdown of both OsHsp70cp genes resulted in white stripe leaves and opaque endosperm. BiFC and Co-IP assays revealed that OsHsp70cp-2 was associated with Tic complex. Taken together, OsHsp70cp-2 may regulate protein import into amyloplasts, which is essential for amyloplast development in rice.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico HSP70/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plastídeos/genética , Plastídeos/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
20.
Plant Sci ; 260: 90-100, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28554480

RESUMO

Tocopherols, a group of Vitamin E compounds, are essential components of the human diet. In contrast to well documented roles in animals, the functions of tocopherols in plants are less understood. In this study, we characterized two allelic rice dwarf mutant lines designated sgd1-1 and sgd1-2 (small grain and dwarf1). Histological observations showed that the dwarf phenotypes were mainly due to cell elongation defects. A map-based cloning strategy and subsequent complementation test showed that SGD1 encodes homogentisate phytyltransferase (HPT), a key enzyme in tocopherol biosynthesis. Mutation of SGD1 resulted in tocopherol deficiency in both sgd1mutants. No oxidant damage was detected in the sgd1 mutants. Further analysis showed that sgd1-2 was hypersensitive to cold stress. Our results indicate that SGD1 is essential for plant development and cold tolerance in rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tocoferóis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA