Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Small ; 19(49): e2303317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612820

RESUMO

Patients with viral myocarditis are at risk of sudden death and may progress to dilated cardiomyopathy (DCM). Currently, no disease-specific therapies exist to treat viral myocarditis. Here it is examined whether reconstituted, lyophilized extracellular vesicles (EVs) from platelets from healthy men and women reduce acute or chronic myocarditis in male mice. Human-platelet-derived EVs (PEV) do not cause toxicity, damage, or inflammation in naïve mice. PEV administered during the innate immune response significantly reduces myocarditis with fewer epidermal growth factor (EGF)-like module-containing mucin-like hormone receptor-like 1 (F4/80) macrophages, T cells (cluster of differentiation molecules 4 and 8, CD4 and CD8), and mast cells, and improved cardiac function. Innate immune mediators known to increase myocarditis are decreased by innate PEV treatment including Toll-like receptor (TLR)4 and complement. PEV also significantly reduces perivascular fibrosis and remodeling including interleukin 1 beta (IL-1ß), transforming growth factor-beta 1, matrix metalloproteinase, collagen genes, and mast cell degranulation. PEV given at days 7-9 after infection reduces myocarditis and improves cardiac function. MicroRNA (miR) sequencing reveals that PEV contains miRs that decrease viral replication, TLR4 signaling, and T-cell activation. These data show that EVs from the platelets of healthy individuals can significantly reduce myocarditis and improve cardiac function.


Assuntos
Cardiomiopatia Dilatada , Miocardite , Humanos , Camundongos , Masculino , Feminino , Animais , Miocárdio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Imunidade Inata , Macrófagos/metabolismo
2.
Biochem Biophys Res Commun ; 623: 44-50, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870261

RESUMO

Aging is associated with increased prevalence of life-threatening ventricular arrhythmias, but mechanisms underlying higher susceptibility to arrhythmogenesis and means to prevent such arrhythmias under stress are not fully defined. We aimed to define differences in aging-associated susceptibility to ventricular fibrillation (VF) induction between young and aged hearts. VF induction was attempted in isolated perfused hearts of young (6-month) and aged (24-month-old) male Fischer-344 rats by rapid pacing before and following isoproterenol (1 µM) or global ischemia and reperfusion (I/R) injury with or without pretreatment with low-dose tetrodotoxin, a late sodium current blocker. At baseline, VF could not be induced; however, the susceptibility to inducible VF after isoproterenol and spontaneous VF following I/R was 6-fold and 3-fold higher, respectively, in old hearts (P < 0.05). Old animals had longer epicardial monophasic action potential at 90% repolarization (APD90; P < 0.05) and displayed a loss of isoproterenol-induced shortening of APD90 present in the young. In isolated ventricular cardiomyocytes from older but not younger animals, 4-aminopyridine prolonged APD and induced early afterdepolarizations (EADs) and triggered activity with isoproterenol. Low-dose tetrodotoxin (0.5 µM) significantly shortened APD without altering action potential upstroke and prevented 4-aminopyridine-mediated APD prolongation, EADs, and triggered activity. Tetrodotoxin pretreatment prevented VF induction by pacing in isoproterenol-challenged hearts. Vulnerability to VF following I/R or catecholamine challenge is significantly increased in old hearts that display reduced repolarization reserve and increased propensity to EADs, triggered activity, and ventricular arrhythmogenesis that can be suppressed by low-dose tetrodotoxin, suggesting a role of slow sodium current in promoting arrhythmogenesis with aging.


Assuntos
Arritmias Cardíacas , Fibrilação Ventricular , 4-Aminopiridina/efeitos adversos , Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Animais , Isoproterenol/efeitos adversos , Masculino , Miócitos Cardíacos , Ratos , Sódio , Tetrodotoxina/farmacologia , Fibrilação Ventricular/tratamento farmacológico , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle
3.
Biochem Biophys Res Commun ; 546: 59-64, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33571905

RESUMO

Adenylate kinase2 (AK2) catalyzes trans-compartmental nucleotide exchange, but the functional implications of this mitochondrial intermembrane isoform is only partially understood. Here, transgenic AK2-/- null homozygosity was lethal early in embryo, indicating a mandatory role for intact AK2 in utero development. In the adult, conditional organ-specific ablation of AK2 precipitated abrupt heart failure with Krebs cycle and glycolytic metabolite buildup, suggesting a vital contribution to energy demanding cardiac performance. Depressed pump function recovered to pre-deletion levels overtime, suggestive of an adaptive response. Compensatory upregulation of phosphotransferase AK1, AK3, AK4 isozymes, creatine kinase isoforms, and hexokinase, along with remodeling of cell cycle/growth genes and mitochondrial ultrastructure supported organ rescue. Taken together, the requirement of AK2 in early embryonic stages, and the immediate collapse of heart performance in the AK2-deficient postnatal state underscore a primordial function of the AK2 isoform. Unsalvageable in embryo, loss of AK2 in the adult heart was recoverable, underscoring an AK2-integrated bioenergetics system with innate plasticity to maintain homeostasis on demand.


Assuntos
Adenilato Quinase/metabolismo , Desenvolvimento Embrionário , Homeostase , Miocárdio/enzimologia , Miocárdio/metabolismo , Adaptação Fisiológica , Adenilato Quinase/deficiência , Adenilato Quinase/genética , Animais , Ciclo do Ácido Cítrico , Perda do Embrião , Desenvolvimento Embrionário/genética , Metabolismo Energético , Feminino , Deleção de Genes , Genes Essenciais/genética , Glicólise , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Homeostase/genética , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
4.
Nature ; 524(7564): 234-8, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26176921

RESUMO

Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Haplótipos/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Mutação/genética , Técnicas de Transferência Nuclear , Nucleotídeos/genética , Consumo de Oxigênio , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA , Pele/citologia
5.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768825

RESUMO

Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.


Assuntos
Insuficiência Cardíaca/reabilitação , Insuficiência Cardíaca/terapia , Medicina Regenerativa/métodos , Células-Tronco Adultas/citologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Células-Tronco/citologia
6.
EMBO J ; 35(18): 1979-90, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436875

RESUMO

Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high-quality biorepositories. Beyond inter-person variability, the root cause of intra-person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover, mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein, we performed mtDNA next-generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals, including mitochondrial and non-mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming, generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically, hiPSC-derived cardiomyocytes with expanded mtDNA mutations non-related with any described human disease, showed impaired mitochondrial respiration, being a potential cause of intra-person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.


Assuntos
Diferenciação Celular , DNA Mitocondrial/genética , Variação Genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Respiração Celular , DNA Mitocondrial/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Miócitos Cardíacos/fisiologia , Fenótipo
7.
Biol Reprod ; 102(3): 607-619, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621839

RESUMO

Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.


Assuntos
Blastocisto/metabolismo , DNA Mitocondrial/genética , Mutação , Oócitos/metabolismo , Animais , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oogênese/genética
8.
J Reconstr Microsurg ; 36(5): 362-368, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32106313

RESUMO

BACKGROUND: The deep inferior epigastric perforator (DIEP) flap is the most common perforator flap for microsurgical breast reconstruction. Contrary to the conventional open approach, robotic-assisted DIEP flap harvest intends to preserve ARS integrity, thereby reducing the morbidity. We assessed the feasibility and compared performance outcomes of a robotic, cadaveric training model for DIEP flap harvest using two approaches: transabdominal preperitoneal (TAPP) and totally extraperitoneal (TEP). METHODS: A robotics system (da Vinci Xi) was applied in conjunction with a cadaveric training model. Ports were placed in the abdominal wall to triangulate each DIEP flap. Surgical time and technical characteristics were recorded. Values were analyzed and compared. RESULTS: Eight female cadavers (16 hemi-DIEP flaps) were dissected: 50% TAPP and 50% TEP approaches. Mean harvest time was 56 minutes (range: 48-74 minutes) and 65 minutes (range: 60-83 minutes) for TAPP versus TEP groups, respectively (p < 0.05). Mean pedicle dissection time was 36 minutes (range: 25-40 minutes) and 39 minutes (range: 30-42 minutes) for TAPP versus TEP groups, respectively (p > 0.05). Intra-abdominal contents were manipulated twice on average in the TAPP group versus 0 times in the TEP group (p < 0.05). One TAPP case had an injury to the bowel, and one TEP case was converted to conventional open due to pneumoperitoneum. CONCLUSION: Robotic-assisted DIEP flap harvest represents a technological enhancement for advanced regenerative plastic surgery. Our model demonstrated both TAPP and TEP are feasible, with TEP less invasive, preserving the posterior rectus sheath, and decreasing complication risks. However, there is a steeper and longer learning curve for TEP.


Assuntos
Artérias Epigástricas/transplante , Mamoplastia , Retalho Perfurante/irrigação sanguínea , Procedimentos Cirúrgicos Robóticos/métodos , Cadáver , Dissecação , Estudos de Viabilidade , Feminino , Humanos
9.
Clin Orthop Relat Res ; 477(8): 1800-1812, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31135556

RESUMO

BACKGROUND: The pathophysiology of osteonecrosis of the femoral head (ONFH) is poorly understood, and the diagnosis is idiopathic in as many as 40% of patients. Genetic and epigenetic etiologies have been postulated, yet no single nucleotide polymorphisms (SNPs) with intuitive biologic implications have been elucidated. QUESTIONS/PURPOSES: (1) Do individuals with ONFH share common biologically relevant genetic variants associated with disease development? (2) What is the mechanism by which these SNPs may impact the expression or function of the affected gene or protein? METHODS: This retrospective genome-wide association study (GWAS) evaluated participants from the Mayo Clinic Biobank and Mayo Clinic Genome Consortium between August 2009 and March 2017. We included every patient with atraumatic ONFH in each of these respective registries and every control patient in a previous GWAS with an acceptable platform to perform statistical imputation. The study was performed in two phases, with an initial discovery cohort and a subsequent validation cohort. The initial discovery cohort consisted of 102 patients with ONFH and 4125 controls. A logistic regression analysis was used to evaluate associations between SNPs and the risk of ONFH, adjusted for age and sex. Seven SNPs were identified in a gene of biological interest, peroxisome proliferator-activated receptor gamma (PPARG), which were then evaluated in a subsequent validation cohort of 38 patients with ONFH and 464 controls. Age, sex, race, and previous steroid exposure were similar between patients with ONFH and controls in both the discovery and validation cohorts. Separate from the two-phase genetic investigation, we performed targeted pharmacosurveillance to evaluate the risk association between the use of antidiabetic thiazolidinediones, a class of PPARG agonists, and development of ONFH by referencing 9,638,296 patient records for individuals treated at Mayo Clinic. RESULTS: A combined analysis of the discovery and validation cohorts revealed that seven SNPs were tightly clustered adjacent to the 3' end of PPARG, suggesting an association with the risk of ONFH (p = 1.58 x 10-5.50 x10). PPARG gene-level significance was achieved (p = 3.33 x 10) when all seven SNPs were considered. SNP rs980990 had the strongest association with the risk of ONFH (odds ratio [OR], 1.95; 95% CI, 1.46-2.59; p = 5.50 x 10).The seven identified SNPs were mapped to a region near the PPARG gene and fell in a highly conserved region consisting of several critical transcription factor binding sites. Nucleotide polymorphisms at these sites may compromise three-dimensional chromatin organization and alter PPARG 3' end interactions with its 5' promoter and transcription start site. Pharmacosurveillance identified that patients who were exposed to thiazolidinediones had an increased relative risk of developing ONFH of 5.6 (95% CI, 4.5-7.1). CONCLUSIONS: We found that disruption of PPARG regulatory domains is linked to an increased risk of ONFH. Mechanistically, aberrant regulation of PPARG compromises musculoskeletal differentiation because this master regulator creates a proadipogenic and antiosteogenic state. Furthermore, PPARG alters steroid metabolism and vasculogenesis, processes that are inextricably linked with ONFH. Pharmacologically, predisposition to ONFH was further exposed with thiazolidinedione use, which upregulates the expression of PPARG and is known to alter bone metabolism. Collectively, these findings provide a foundation to perform confirmatory studies of our proposed mechanism in preclinical models to develop screening diagnostics and potential therapies in patients with limited options. LEVEL OF EVIDENCE: Level III, prognostic study.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Hipoglicemiantes/efeitos adversos , PPAR gama/agonistas , PPAR gama/genética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Tiazolidinedionas/efeitos adversos , Idoso , Distinções e Prêmios , Bases de Dados Factuais , Feminino , Necrose da Cabeça do Fêmur/diagnóstico , Necrose da Cabeça do Fêmur/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , PPAR gama/metabolismo , Farmacovigilância , Fenótipo , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
10.
J Nurs Scholarsh ; 51(6): 651-660, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31566894

RESUMO

BACKGROUND: Regenerative technologies aim to restore organ form and function. Technological advances in regenerative treatments have led to patients increasingly seeking these therapies. The readiness of nursing to fully contribute to this emerging healthcare field is uncertain. PURPOSE: The goal of this discipline-oriented overview is to enhance awareness in the nursing community regarding regenerative science, and to provide suggestions for nursing research contributions and practice implications. METHODS: Evolving and applied cutting-edge therapies, such as regenerative immunotherapies with chimeric antigen receptor expressing T lymphocytes, are highlighted in the context of emerging opportunities for nurses in practice and research. DISCUSSION: Next generation nurses will increasingly be at the forefront of new therapies poised to make chronic illnesses curable, thus restoring health and function to diverse groups of individuals. CLINICAL RELEVANCE: The regenerative care model imposes on the nursing community the imperative to (a) increase research awareness; (a) educate, develop, and deploy a skilled nursing workforce; (c) integrate regenerative technologies into nursing practice; and (d) embrace the regenerative technologies horizon as a future in health care.


Assuntos
Atenção à Saúde/organização & administração , Pesquisa em Enfermagem , Medicina Regenerativa , Humanos
11.
Semin Cell Dev Biol ; 52: 68-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868758

RESUMO

Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle--from maintenance and acquisition of stemness to lineage commitment and specification--is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Metabolismo Energético/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
12.
Am J Physiol Renal Physiol ; 315(5): F1493-F1499, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30019935

RESUMO

There is no therapy that promotes maturation and functionality of a dialysis arteriovenous fistula (AVF). The search for such therapies largely relies on evaluation of vascular responses and putative therapies in experimental AVFs. We studied an AVF in mice with chronic kidney disease (CKD). We demonstrate numerous stressors in the vein of the AVF-CKD group, including pathological shear, mitogenic, inflammatory, and hypoxia-reoxygenation stress. Because stress promotes premature senescence, we examined whether senescence is induced in the vein of the AVF-CKD model. We demonstrate a senescence phenotype in the AVF-CKD model, as indicated by increased expression of p16Ink4a, p21Cip1, and p53 and expected changes for certain senescence-associated microRNAs. RNA-sequencing analysis demonstrated differential expression of ~10,000 genes, including upregulation of proinflammatory and proliferative genes, in the vein of the AVF-CKD group. The vein in the AVF-CKD group exhibited telomere erosion and increased senescence-associated ß-galactosidase activity and staining. Senescence was induced in the artery of the AVF-CKD group and in the vein of the AVF without CKD. Finally, given the rapidly rising clinical interest in senolytics, we provide proof of concept of senolytics as a therapeutic approach by demonstrating that senolytics decrease p16Ink4a expression in the AVF-CKD model. This study introduces a novel concept underlying the basis for maturational and functional failure in human dialysis AVFs and identifies a new target for senolytic therapy.


Assuntos
Derivação Arteriovenosa Cirúrgica , Senescência Celular , Complicações Pós-Operatórias/patologia , Diálise Renal , Insuficiência Renal Crônica/terapia , Cauda/irrigação sanguínea , Remodelação Vascular , Veias/cirurgia , Animais , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Velocidade do Fluxo Sanguíneo , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Dasatinibe/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/fisiopatologia , Quercetina/farmacologia , Fluxo Sanguíneo Regional , Estresse Mecânico , Grau de Desobstrução Vascular , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética , Veias/metabolismo , Veias/patologia , Veias/fisiopatologia
13.
Hum Mol Genet ; 25(2): 254-65, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604136

RESUMO

Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 (RBM20), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20-dependent splice variants affected sarcomeric (TTN and LDB3) and calcium (Ca(2+)) handling (CAMK2D and CACNA1C) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length (RBM20: 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P < 0.0001) and decreased sarcomeric width (RBM20: 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P < 0.0001). Additionally, CMs showed defective Ca(2+) handling machinery with prolonged Ca(2+) levels in the cytoplasm as measured by greater area under the curve (RBM20: 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P < 0.05) and higher Ca(2+) spike amplitude (RBM20: 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P < 0.05). ß-adrenergic stress induced with 10 µm norepinephrine demonstrated increased susceptibility to sarcomeric disorganization (RBM20: 86 ± 10.5% versus control: 40 ± 7%; P < 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool to dissect disease-relevant defects in RBM20 splicing as a global regulator of heart function.


Assuntos
Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Adulto , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Modelos Biológicos , Mutação de Sentido Incorreto , Linhagem , Splicing de RNA/genética , Transcriptoma , Adulto Jovem
14.
Clin Orthop Relat Res ; 476(2): 388-397, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29529674

RESUMO

BACKGROUND: Randomized trials have shown the benefits of injecting bone marrow-derived mesenchymal stem cells (BmMSCs) after standard hip decompression in patients with osteonecrosis of the femoral head. However, the combination of BmMSCs and platelet-rich plasma (PRP) injected into the femoral head after decompression has not been reported previously. This study reports the results in a preliminary series of patients with osteonecrosis of the femoral head treated with BmMSCs plus PRP. QUESTIONS/PURPOSES: (1) What is the survivorship free from reoperation, hip arthroplasty, and femoral head collapse in a preliminary series of patients with osteonecrosis of the femoral head treated with BmMSCs plus PRP? (2) Is there a change in the degree of femoral head involvement based on modified Kerboul angle? (3) What were the scores observed for pain and function at last followup? (4) Was there a difference in survivorship free from reoperation as a function of in vitro MSC count and viability? METHODS: Twenty-two consecutive patients (35 hips; 11 men and 11 women) with corticosteroid-induced osteonecrosis who met study inclusion criteria were enrolled; none declined participation, and none was lost to followup, although one patient (two hips) died within a year of the procedure for reasons unrelated to it, and five patients (seven hips) did not undergo MRI at the 1-year followup. All patients had precollapse osteonecrosis, rated either University of Pennsylvania Stage 1 (n = 4) or Stage 2 (n = 31 hips). Mean age and body mass index were 43 years and 31 kg/m, respectively. Patients underwent pre- and postoperative radiographs and MRI to assess femoral head involvement using the modified Kerboul angle. Absolute cell count and colony-forming unit (CFU) assays were used to assess MSC abundance and viability of the bone marrow obtained at the time of surgery. Patients were followed at regular intervals to assess clinical response to treatment with a mean followup of 3 years (range, 2-4 years). The change in femoral head involvement was assessed with the modified Kerboul angle; the Harris hip score was used to assess clinical outcome; and conversion to THA, reoperation, and survivorship free from femoral head collapse were analyzed with the Kaplan-Meier method on a per-hip basis. RESULTS: Survivorship free from THA, any procedure, and femoral head collapse was 84% (95% confidence interval [CI], 75%-93%), 67% (95% CI, 55%-79%), and 93% (95% CI, 76%-98%), respectively, at 3 years postoperatively; two patients (four hips) underwent a second decompression and MSC injection for persistent pain without signs of radiographic collapse. All patients with collapse underwent THA. The mean modified Kerboul angle improved from 205° ± 47° to 172° ± 48° postoperatively (mean change -30° ± 6°, p = 0.01). A greater proportion of patients who underwent an additional procedure had a modified Kerboul grade of 3 or 4 preoperatively (80% [four of five] versus 13% [four of 30 Grade 1 or 2; odds ratio, 26; 95% CI, 2-296; p = 0.005). Preoperatively the mean Harris hip score was 57 ± 12, which improved to 85 ± 15 (mean change 28 ± 3, p < 0.001) at most recent followup. Patients undergoing a reoperation or THA had a lower mean concentration of nucleated cells/mL (5.5 x 10 ± 2.8 x 10 cells/mL versus 2.3 x 10 ± 2.2 x 10 cells/mL, p = 0.02) and lower mean CFUs (13 ± 6 versus 19 ± 7, p = 0.04) compared with those who did not. CONCLUSIONS: Core hip decompression with injection of concentrated bone marrow plus PRP improved pain and function; > 90% of hips in this series were without collapse at a minimum of 2 years. In this preliminary study, successful results were seen when nucleated cell count was high and modified Kerboul grade was low. Further randomized studies are needed to determine this procedure's efficacy versus core decompression or nonoperative treatment alone. LEVEL OF EVIDENCE: Level II, therapeutic study.


Assuntos
Corticosteroides/efeitos adversos , Necrose da Cabeça do Fêmur/terapia , Transplante de Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Adulto , Idoso , Terapia Combinada , Avaliação da Deficiência , Feminino , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/fisiopatologia , Humanos , Injeções Intra-Articulares , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pessoa de Meia-Idade , Medição da Dor , Dados Preliminares , Estudos Prospectivos , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
15.
Eur Heart J ; 38(9): 648-660, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025189

RESUMO

AIMS: Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. METHODS AND RESULTS: This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein-Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann-Whitney estimator 0.54, 95% confidence interval [CI] 0.47-0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200-370 mL (60% of patients) (Mann-Whitney estimator 0.61, 95% CI 0.52-0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. CONCLUSION: The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted.


Assuntos
Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Isquemia Miocárdica/terapia , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
16.
J Biol Chem ; 291(3): 1514-28, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26601949

RESUMO

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.


Assuntos
Calcitriol/metabolismo , Regulação da Expressão Gênica , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Receptores de Calcitriol/agonistas , Calcitriol/análogos & derivados , Células Cultivadas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
17.
J Mol Cell Cardiol ; 92: 63-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826378

RESUMO

Calreticulin deficiency causes myocardial developmental defects that culminate in an embryonic lethal phenotype. Recent studies have linked loss of this calcium binding chaperone to failure in myofibrillogenesis through an as yet undefined mechanism. The purpose of the present study was to identify cellular processes corrupted by calreticulin deficiency that precipitate dysregulation of cardiac myofibrillogenesis related to acquisition of cardiac phenotype. In an embryonic stem cell knockout model, calreticulin deficit (crt(-/-)) compromised nucleocytoplasmic transport of nuclear localization signal-dependent and independent pathways, disrupting nuclear import of the cardiac transcription factor MEF2C. The expression of nucleoporins and associated nuclear transport proteins in derived crt(-/-) cardiomyocytes revealed an abnormal nuclear pore complex (NPC) configuration. Altered protein content in crt(-/-) cells resulted in remodeled NPC architecture that caused decreased pore diameter and diminished probability of central channel occupancy versus wild type counterparts. Ionophore treatment of impaired calcium handling in crt(-/-) cells corrected nuclear pore microarchitecture and rescued nuclear import resulting in normalized myofibrillogenesis. Thus, calreticulin deficiency alters nuclear pore function and structure, impeding myofibrillogenesis in nascent cardiomyocytes through a calcium dependent mechanism. This essential role of calreticulin in nucleocytoplasmic communication competency ties its regulatory action with proficiency of cardiac myofibrillogenesis essential for proper cardiac development.


Assuntos
Calreticulina/genética , Cardiomiopatias/genética , Desenvolvimento Muscular/genética , Poro Nuclear/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Calreticulina/deficiência , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Técnicas de Inativação de Genes , Humanos , Fatores de Transcrição MEF2/genética , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura
18.
Circulation ; 132(9): 852-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26195497

RESUMO

The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings.


Assuntos
American Heart Association , Doenças Cardiovasculares/genética , Nível de Saúde , Proteômica/tendências , Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular , Humanos , Proteômica/métodos , Estados Unidos
19.
Circulation ; 131(19): 1715-36, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25882488

RESUMO

The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care.


Assuntos
Doenças Cardiovasculares/genética , Genômica , Pesquisa Translacional Biomédica/tendências , American Heart Association , Animais , Biotransformação/genética , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Variação Genética , Projeto Genoma Humano , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas , Camundongos , Terapia de Alvo Molecular , Pesquisa Translacional Biomédica/economia , Pesquisa Translacional Biomédica/organização & administração , Estados Unidos
20.
Hum Mol Genet ; 23(14): 3779-91, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24584570

RESUMO

Dilated cardiomyopathy (DCM) due to mutations in RBM20, a gene encoding an RNA-binding protein, is associated with high familial penetrance, risk of progressive heart failure and sudden death. Although genetic investigations and physiological models have established the linkage of RBM20 with early-onset DCM, the underlying basis of cellular and molecular dysfunction is undetermined. Modeling human genetics using a high-throughput pluripotent stem cell platform was herein designed to pinpoint the initial transcriptome dysfunction and mechanistic corruption in disease pathogenesis. Tnnt2-pGreenZeo pluripotent stem cells were engineered to knockdown Rbm20 (shRbm20) to determine the cardiac-pathogenic phenotype during cardiac differentiation. Intracellular Ca(2+) transients revealed Rbm20-dependent alteration in Ca(2+) handling, coinciding with known pathological splice variants of Titin and Camk2d genes by Day 24 of cardiogenesis. Ultrastructural analysis demonstrated elongated and thinner sarcomeres in the absence of Rbm20 that is consistent with human cardiac biopsy samples. Furthermore, Rbm20-depleted transcriptional profiling at Day 12 identified Rbm20-dependent dysregulation with 76% of differentially expressed genes linked to known cardiac pathology ranging from primordial Nkx2.5 to mature cardiac Tnnt2 as the initial molecular aberrations. Notably, downstream consequences of Rbm20-depletion at Day 24 of differentiation demonstrated significant dysregulation of extracellular matrix components such as the anomalous overexpression of the Vtn gene. By using the pluripotent stem cell platform to model human cardiac disease according to a stage-specific cardiogenic roadmap, we established a new paradigm of familial DCM pathogenesis as a developmental disorder that is patterned during early cardiogenesis and propagated with cellular mechanisms of pathological cardiac remodeling.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Dilatada/etiologia , Coração/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Sarcômeros/patologia , Animais , Cardiomiopatia Dilatada/patologia , Diferenciação Celular , Linhagem Celular , Corpos Embrioides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Splicing de RNA , Sarcômeros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA