Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

2.
Chemphyschem ; 23(8): e202200074, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35312211

RESUMO

Heterogeneous catalysts are often complex materials containing different compounds. While this can lead to highly beneficial interfaces, it is difficult to identify the role of single components. In methanol steam reforming (MSR), the interplay between intermetallic compounds, supporting oxides and redox reactions leads to highly active and CO2 -selective materials. Herein, the intrinsic catalytic properties of unsupported In3 Pt2 , In2 Pt, and In7 Pt3 as model systems for Pt/In2 O3 -based catalytic materials in MSR are addressed. In2 Pt was identified as the essential compound responsible for the reported excellent CO2 -selectivity of 99.5 % at 300 °C in supported systems, showing a CO2 -selectivity above 99 % even at 400 °C. Additionally, the partial oxidation of In7 Pt3 revealed that too much In2 O3 is detrimental for the catalytic properties. The study highlights the crucial role of intermetallic In-Pt compounds in Pt/In2 O3 materials with excellent CO2 -selectivity.

4.
Nat Mater ; 19(11): 1215-1223, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661387

RESUMO

This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen-air fuel cell power density. The SnNC-NH3 catalysts displayed a 40-50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. A range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(IV)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen-air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today's state-of-the-art Fe-based catalysts.

5.
Phys Chem Chem Phys ; 22(20): 11273-11285, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32309844

RESUMO

Polycrystalline ZnO is a material often used in heterogeneous catalysis. Its properties can be altered by the addition of dopants. We used gaseous fluorine (F2(g)) as direct way to incorporate fluoride in ZnO as anionic dopants. Here, the consequences of this treatment on the structural and electronic properties, as well as on the acidic/basic sites of the surface, are investigated. It is shown that the amount of F incorporation into the structure can be controlled by the synthesis parameters (t, T, p). While the surface of ZnO was altered as shown by, e.g., IR spectroscopy, XPS, and STEM/EDX measurements, the F2 treatment also influenced the electronic properties (optical band gap, conductivity) of ZnO. Furthermore, the Lewis acidity/basicity of the surface was affected which is evidenced by using, e.g., different probe molecules (CO2, NH3). In situ investigations of the fluorination process offer valuable insights on the fluorination process itself.

6.
Angew Chem Int Ed Engl ; 59(38): 16770-16776, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32441451

RESUMO

The production of hydrogen via water electrolysis is feasible only if effective and stable catalysts for the oxygen evolution reaction (OER) are available. Intermetallic compounds with well-defined crystal and electronic structures as well as particular chemical bonding features are suggested here to act as precursors for new composite materials with attractive catalytic properties. Al2 Pt combines a characteristic inorganic crystal structure (anti-fluorite type) and a strongly polar chemical bonding with the advantage of elemental platinum in terms of stability against dissolution under OER conditions. We describe here the unforeseen performance of a surface nanocomposite architecture resulting from the self-organized transformation of the bulk intermetallic precursor Al2 Pt in OER.

7.
J Am Chem Soc ; 141(6): 2451-2461, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30640467

RESUMO

We report on the activation of CO2 on Ni single-atom catalysts. These catalysts were synthesized using a solid solution approach by controlled substitution of 1-10 atom % of Mg2+ by Ni2+ inside the MgO structure. The Ni atoms are preferentially located on the surface of the MgO and, as predicted by hybrid-functional calculations, favor low-coordinated sites. The isolated Ni atoms are active for CO2 conversion through the reverse water-gas shift (rWGS) but are unable to conduct its further hydrogenation to CH4 (or MeOH), for which Ni clusters are needed. The CO formation rates correlate linearly with the concentration of Ni on the surface evidenced by XPS and microcalorimetry. The calculations show that the substitution of Mg atoms by Ni atoms on the surface of the oxide structure reduces the strength of the CO2 binding at low-coordinated sites and also promotes H2 dissociation. Astonishingly, the single-atom catalysts stayed stable over 100 h on stream, after which no clusters or particle formation could be detected. Upon catalysis, a surface carbonate adsorbate-layer was formed, of which the decompositions appear to be directly linked to the aggregation of Ni. This study on atomically dispersed Ni species brings new fundamental understanding of Ni active sites for reactions involving CO2 and clearly evidence the limits of single-atom catalysis for complex reactions.

9.
Angew Chem Int Ed Engl ; 58(26): 8709-8713, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31066962

RESUMO

The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic-scale study of metal-promoter interactions in silica-supported Rh, Rh-Mn, and Rh-Mn-Fe catalysts by aberration-corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh-Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh-Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.

10.
Faraday Discuss ; 208(0): 207-225, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29809207

RESUMO

The mutual interaction between Rh nanoparticles and manganese/iron oxide promoters in silica-supported Rh catalysts for the hydrogenation of CO to higher alcohols was analyzed by applying a combination of integral techniques including temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy with local analysis by using high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in combination with energy dispersive X-ray spectroscopy (EDX). The promoted catalysts show reduced CO adsorption capacity as evidenced through FTIR spectroscopy, which is attributed to a perforated core-shell structure of the Rh nano-particles in accordance with the microstructural analysis from electron microscopy. Iron and manganese occur in low formal oxidation states between 2+ and zero in the reduced catalysts as shown by using TPR and XAS. Infrared spectroscopy measured in diffuse reflectance at reaction temperature and pressure indicates that partial coverage of the Rh particles is maintained at reaction temperature under operation and that the remaining accessible metal adsorption sites might be catalytically less relevant because the hydrogenation of adsorbed carbonyl species at 523 K and 30 bar hydrogen essentially failed. It is concluded that Rh0 is poisoned due to the adsorption of CO under the reaction conditions of CO hydrogenation. The active sites are associated either with a (Mn,Fe)Ox (x < 0.25) phase or species at the interface between Rh and its co-catalyst (Mn,Fe)Ox.

11.
Angew Chem Int Ed Engl ; 57(13): 3514-3518, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29316096

RESUMO

By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability.

12.
J Am Chem Soc ; 138(38): 12552-63, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27549910

RESUMO

Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

13.
J Am Chem Soc ; 137(40): 13031-40, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26355767

RESUMO

Mixed bimetallic oxides offer great opportunities for a systematic tuning of electrocatalytic activity and stability. Here, we demonstrate the power of this strategy using well-defined thermally prepared Ir-Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC). Variation of the Ir to Ni ratio resulted in a volcano type OER activity curve with an unprecedented 20-fold improvement in Ir mass-based activity over pure Ir oxide. In situ spectroscopic probing of metal dissolution indicated that, against common views, activity and stability are not directly anticorrelated. To uncover activity and stability controlling parameters, the Ir-Ni mixed thin oxide film catalysts were characterized by a wide array of spectroscopic, microscopic, scattering, and electrochemical techniques in conjunction with DFT theoretical computations. By means of an intuitive model for the formation of the catalytically active state of the bimetallic Ir-Ni oxide surface, we identify the coverage of reactive surface hydroxyl groups as a suitable descriptor for the OER activity and relate it to controllable synthetic parameters. Overall, our study highlights a novel, highly active oxygen evolution catalyst; moreover, it provides novel important insights into the structure and performance of bimetallic oxide OER electrocatalysts in corrosive acidic environments.

14.
Angew Chem Int Ed Engl ; 54(10): 2975-9, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25611732

RESUMO

Active and highly stable oxide-supported IrNiO(x) core-shell catalysts for electrochemical water splitting are presented. IrNi(x)@IrO(x) nanoparticles supported on high-surface-area mesoporous antimony-doped tin oxide (IrNiO(x)/Meso-ATO) were synthesized from bimetallic IrNi(x) precursor alloys (PA-IrNi(x) /Meso-ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA-IrNi(x)/Meso-ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core-shell particles. The core-shell IrNiO(x)/Meso-ATO catalyst displayed high water-splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability.

15.
Nano Lett ; 13(10): 4697-701, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24004050

RESUMO

Unfortunately, the practical applications of Li-O2 batteries are impeded by poor rechargeability. Here, for the first time we show that superoxide radicals generated at the cathode during discharge react with carbon that contains activated double bonds or aromatics to form epoxy groups and carbonates, which limits the rechargeability of Li-O2 cells. Carbon materials with a low amount of functional groups and defects demonstrate better stability thus keeping the carbon will-o'-the-wisp lit for lithium-air batteries.

17.
Phys Chem Chem Phys ; 15(10): 3454-65, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23361164

RESUMO

CeO(2) has been identified as an efficient catalyst for HCl oxidation in the temperature range of 623-723 K provided that the oxygen content in the feed mixture was sufficiently high to avoid bulk chlorination and thus deactivation. Here we characterise ceria in its fresh and post-reaction states by adsorption of CO(2), NH(3) and CO. Micro-calorimetry, FTIR and TPD experiments are complemented by DFT calculations, which assess adsorption energies and vibrational frequencies. The calculations were performed on the lowest energy surface, CeO(2)(111), with perfect termination and with various degrees of hydroxylation and/or chlorination. Both experiments and calculations suggest that the basic character of the ceria surface has been eliminated upon reaction in HCl oxidation, indicating that most of the basic lattice O sites are exchanged by chlorine and that the OH groups formed are rather acidic. The density and the strength of surface acidic functions increased significantly upon reaction. An in situ FTIR reaction cell has been designed and constructed to study the evolution of OH group density of the ceria surface during HCl oxidation. The effect of experimental variables, such as pO(2), pHCl and temperature, has been investigated. We found that the OH group density positively correlated with the reactivity in the pO(2) and temperature series, whereas negative correlation was observed when pHCl was varied. Implications of the above observations to the reaction mechanism are discussed.

18.
Chemistry ; 18(47): 14962-6, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23090892

RESUMO

Palladium dynamics: Under hydrogenation conditions, saturating over-active palladium by carbon diffusion leads to a stable and selective particle surface. By choosing supports with suitable geometric structures and establishing a strong interaction between supports and metal particles, accumulated species can be regularly rearranged and reaction-selective phases can be exposed (see figure).


Assuntos
Acetileno/química , Etilenos/síntese química , Nanopartículas Metálicas/química , Paládio/química , Etilenos/química , Hidrogenação , Tamanho da Partícula , Propriedades de Superfície
19.
Phys Chem Chem Phys ; 14(20): 7392-9, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22531826

RESUMO

Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.


Assuntos
Cloro/química , Técnicas Eletroquímicas , Óxidos/química , Rutênio/química , Estanho/química , Catálise , Eletrodos , Transição de Fase , Propriedades de Superfície , Titânio/química , Espectroscopia por Absorção de Raios X
20.
J Am Chem Soc ; 132(42): 14745-7, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20925320

RESUMO

The intermetallic compounds Pd(3)Ga(7), PdGa, and Pd(2)Ga are found to be highly selective semihydrogenation catalysts for acetylene outperforming established systems. The stability of the crystal and electronic structure under reaction conditions allows the direct relation of structural and catalytic properties and a knowledge-based development of new intermetallic catalyst systems. In the crystal structure of PdGa palladium is exclusively surrounded by gallium atoms. The alteration of the Pd coordination in PdGa leads to a strong modification of the electronic structure around the Fermi level in comparison to elemental Pd. Electronic modification and isolation of active sites causes the excellent catalytic semihydrogenation properties.


Assuntos
Gálio/química , Hidrogênio/química , Paládio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA