RESUMO
Nitric oxide plays an important role in several physiological processes. This study investigates model ruthenium ammine coordination compounds to control NO bioavailability: cis-[RuCl(NO)(NH3)4]+ (1+), cis-[RuCl(NO)(NH3)4]2+ (12+), cis-[RuCl(NO)(NH3)4]3+ (13+), trans-[RuCl(NO)(NH3)4]+ (2+), trans-[RuCl(NO)(NH3)4]2+ (22+), trans-[RuCl(NO)(NH3)4]3+ (23+), [Ru(NO)(NH3)5]+ (3+), [Ru(NO)(NH3)5]2+ (32+), and [Ru(NO)(NH3)5]3+ (33+). We employed natural population analysis (NPA) atomic charges (qNPA) and the LUMO to identify the main reduction sites in the complexes 1, 2 and 3. For example, in the transformations 12+ â 1+, 22+ â 2+, and 33+ â 32+, the main reduction site was a NO π* orbital, which accounted for the lower electron density of the Ru-NO bond critical point (BCP) in 1+, 2+, and 32+ than 12+, 22+, and 33+, respectively, as shown by the quantum theory of atoms in molecules (QTAIM). The QTAIM method indicated that the electron density was larger in Ru-NO BCP due to the Cl negative cis- and trans-influence in 12+ and 22+, respectively, as compared with the NH3 influence in 33+. Compared to trans-Cl-Ru-NO in 22+, the interacting quantum atoms method demonstrated that cis-Cl-Ru-NO in 12+ displayed (i) a larger repulsive electrostatic energy, which agreed with qNPA, and (ii) a less negative exchange-correlation energy between Ru and the NO nitrogen atom, which agreed with topological analyses performed by the QTAIM method. Thus, the combination of topological and energy decomposition analyses allowed the mechanism behind the Ru-NO bond to be revealed regarding the influence of the total charge and the relative position of the ligands.
RESUMO
The immobilization and characterization of trans-[Ru(NO)Cl(cyclam)](PF6)2 (cyclam=1,4,8,11-tetraazacyclotetradecane), and [Ru(NO)(Hedta)] (Hedta=ethylenediaminetetraacetic acid) entrapped in poly(d,l-lactic-co-glycolic) acid (PLGA) nanoparticles (NP) using the double emulsification process is described. Scanning electron microscopy and dynamic light scattering revealed that the particles are spherical in shape, have a size distribution between 220 and 840 nm of diameter, and have a tendency to aggregate confirmed by a zeta potential between -3.2 and +3.5 mV. Using this method the loading efficiency was 26% for trans-[Ru(NO)Cl(cyclam)](PF6)2 and 32% for [Ru(NO)(Hedta)]. The release of the complexes from the NPs shows that cyclam-NP and Hedta-NP exhibited a two-phase exponential association release pattern, which was characterized by an initial complex burst during the first 24 h, followed by a slower release phase complex profile, due to a few pores observed in surface of nanoparticles using atomic force microscopy. The in vitro cytotoxic activity of the nitrosyl complexes in solution and incorporated in PLGA nanoparticles on melanoma cancer cells (cell line B16-F10) was investigated. The lower cytotoxicity of trans-[RuCl(cyclam)(NO)]2+ (12.4±2.6%) and [Ru(NO)(Hedta)] (4.0±2.7%) in solution compared to that of trans-[Ru(NO)(NH3)4py]3+ (46.1±6.4%) is consistent with the rate constant release of NO of these complexes (k-NO=6.2×10(-4) s(-1), 2.0×10(-3) s(-1), and 6.0×10(-2) s(-1), respectively); the cytotoxicities are also inhibited in the presence of the NO scavenger carboxy-PTIO. The phototoxicity of these complexes is due to NO release, which lead to 53.8±6.2% of cell death in the presence of trans-[Ru(NO)Cl(cyclam)](PF6)2 and 22.3±5.1% in the presence of [Ru(NO)(Hedta)]. The PLGA nanoparticles loaded with trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] exerted in vitro a reduced activity against melanoma cells when compared to the activity of complex in solution (nonentrapped in nanoparticles). Blank PLGA nanoparticles did not exhibit cytotoxicity. In the presence of light and of ruthenium nitrosyl complexes or cyclam-NP and Hedta-NP, B16-F10 cells displayed a considerable damage of the surface with rupture of the plasma membrane. This behavior is an indicative of the efficiency of the DDS to deliver the NO from the entrapped complex when photoinduced.
Assuntos
Ácido Láctico/química , Nanopartículas/química , Óxido Nítrico/metabolismo , Ácido Poliglicólico/química , Animais , Linhagem Celular Tumoral , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/química , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [Ru(II)NO(+)](3+)/[Ru(II)NO(0)](2+) reduction potential, the specific rate constant for NO liberation from the [RuNO](2+) moiety, and the quantum yield of NO release.
Assuntos
Óxido Nítrico/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio , Aminas/química , Aminas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Fotoquímica/métodos , Vasoconstritores/química , Vasoconstritores/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologiaRESUMO
The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 microM range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 microM) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present.
Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only.
Assuntos
Ácido Láctico/química , Óxido Nítrico/administração & dosagem , Ácido Poliglicólico/química , Compostos de Rutênio/farmacologia , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Fotoquímica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Compostos de Rutênio/administração & dosagemRESUMO
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex.
Assuntos
Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/efeitos da radiação , Técnicas In Vitro , Masculino , Modelos Moleculares , Estrutura Molecular , Doadores de Óxido Nítrico/efeitos da radiação , Fotoquímica , Ratos , Ratos Wistar , Compostos de Rutênio/efeitos da radiação , Raios Ultravioleta , Vasodilatadores/efeitos da radiaçãoRESUMO
OBJECTIVES: Vascular smooth muscle cell (VSMC) migration and proliferation at sites of vascular injury are both critical steps in the development of intimal hyperplasia (IH). Local delivery of nitric oxide (NO) largely prevents these events. Among the NO donors, tetraazamacrocyclic nitrosyl complexes, such as trans-[Ru(NO)Cl(cyclam)](PF6 )2 (cyclamNO), gained attention for their features, which include the possibility of being embedded in solid matrices, and ability to participate in a nitrite/NO catalytic conversion cycle. METHODS: Methods used to evaluate cyclamNO activity: safety margin by NR and MTT; cell proliferation by 3H-thymidine incorporation and proliferating cell nuclear antigen (PCNA) expression; antimigratory properties by transwell and wound healing; prevention of cell phenotypic switching under platelet-derived growth factor type BB (PDGF-BB) stimuli by analysis of alpha smooth muscle actin (α-SMA) expression. KEY FINDINGS: Cell proliferation and migration induced by PDGF-BB were significantly inhibited by cyclamNO. The ~60% reduction on expression of contractile protein α-SMA induced by PDGF-BB revealed VSMC phenotypic switching which is significantly prevented by cyclamNO. Compared to the NO donor sodium nitroprusside, cyclamNO showed to be significantly less cytotoxic. CONCLUSIONS: With great potential to maintain VSMC functionality and prevent IH-associated events, cyclamNO might be a promissory drug for several applications in cardiovascular medicine, as in stents.
Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos de Rutênio/farmacologia , Actinas/metabolismo , Animais , Becaplermina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitroprussiato , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-sis/administração & dosagem , CoelhosRESUMO
The immobilization and properties of the nitric oxide donor trans-[Ru(NO)Cl(cyclam)](PF(6))(2), RuNO, entrapped in a silica matrix by the sol-gel process is reported herein. The entrapped nitrosyl complex was characterized by spectroscopic (UV-vis, infrared (IR), X-ray photoelectron, and (13)C and (29)Si MAS NMR) and electrochemical techniques. The entrapped species exhibit one characteristic absorption band in the UV-vis region of the electronic spectrum at 354 nm and one IR nu(NO) stretching band at 1865 cm(-1), as does the RuNO species in aqueous solution. Our results show that trans-[Ru(NO)Cl(cyclam)](PF(6))(2) can be entrapped in a SiO(2) matrix with preservation of the molecular structure. However, in a SiO(2)/SiNH(2) matrix, the complex undergoes a nucleophilic attack by the amine group at the nitrosonium. Irradiation of the complex, entrapped in the SiO(2) matrix, with light of 334 nm, resulted in NO release. The material was regenerated to its initial nitrosyl form by reaction with nitric oxide.
Assuntos
Géis/química , Espectroscopia de Ressonância Magnética/métodos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/química , Compostos Organometálicos/química , Dióxido de Silício/química , Espectrofotometria Infravermelho/métodos , Aminas/química , Tetracloreto de Carbono/química , Desenho de Fármacos , Eletroquímica/métodos , Luz , Microscopia Eletrônica de Varredura , Doadores de Óxido Nítrico/química , Nitrogênio/química , Rutênio/química , Raios XRESUMO
Light activation leads to release of NO from a silicate sol-gel material SG-RuNO prepared from the ruthenium complex, [Ru(salen)(OH2)(NO)]+ (salen = N,N'-bis-(salicylidene)ethyl-enediaminato); after photochemical NO photolabilization, SG-RuNO can be regenerated from the spent material via the subsequent reaction with aqueous nitrite.
Assuntos
Óxido Nítrico/química , Compostos Organometálicos/química , Dióxido de Silício/química , Luz , Estrutura Molecular , Compostos Organometálicos/efeitos da radiação , Transição de Fase , Fotoquímica , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
BACKGROUND: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. OBJECTIVE: To evaluate the vascular response of the tetraamines trans-[Ru(II)(NH3)4(Py)(NO)](3+), trans-[Ru(II)(Cl)(NO) (cyclan)](PF6)2, and trans-[Ru(II)(NH3)4(4-acPy)(NO)](3+). METHODS: Aortic rings were contracted with noradrenaline (10(-6) M). After voltage stabilization, a single concentration (10(-6) M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10(-6) M and sodium nitroprusside at 10(-6) M as well as by histological examination. RESULTS: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. CONCLUSION: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10(-6) M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.
Assuntos
Aminas/farmacologia , Aorta Torácica/efeitos dos fármacos , Óxido Nítrico/farmacologia , Rutênio/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/análise , Norepinefrina/farmacologia , Piridinas/farmacologia , Ratos Wistar , Reprodutibilidade dos Testes , Compostos de Rutênio/farmacologia , Fatores de Tempo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacosRESUMO
Ruthenium(II/III) complexes able to bind and release NO* were tested in vivo, in conscious Wistar rats instrumented for continuous blood pressure (BP) measurement and administration of in bolus injections (5 to 100 nmol/Kg i.v.) of trans-[Ru(II)Cl(NO+)(cyclam)](PF6)2 (cyclam-NO) or sodium nitroprusside (SNP). For normotensive rats, cyclam-NO produced a sustained 10% BP reduction of basal MAP during 7 +/- 0.4 to 11 +/- 0.3 min. In acute hypertensive rats, cyclam-NO produced BP reduction 3-fold larger than in normotensive rats and similar to that of SNP (maximal effect: 41 +/- 1.3 vs. 45 +/- 2.2 mmHg, respectively). However, the duration of the effect of cyclam-NO was 13 to 21-fold longer than that of SNP. The hypotensive effect of cyclam-NO was fully blocked in presence of continuous infusion of a NO* scavenger, carboxy-PTIO (6 mmol/Kg/min), or of the inhibitor of cGMP activation, methylene blue (83 nmol/Kg/min), or of the cyclam-NO precursor, trans-[RuCl(tfins)(cyclam)](tfms) (cyclam-tfms) (500 mmol/Kg/min). The long lasting BP reduction of cyclam-NO can be interpreted in terms of a slower rate of NO* release (k-NO = 2.2 x 10(-3) S(-1) at 35 degrees C) following chemical reduction (E(0') = 0.10 V vs NHE). In summary, cyclam-NO showed an hypotensive effect around 20 times longer than SNP in either normotensive or hypertensive rats, which was completely inhibited by methylene blue or carboxy-PTIO. Continuous infusion of cyclam-tfms completely blocked the hypotensive effect of cyclam-NO by scavenging the NO* released by the reduced cyclam-NO.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Hipertensão/metabolismo , Hipotensão/tratamento farmacológico , Óxido Nítrico/farmacologia , Rutênio/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Imidazóis/farmacologia , Masculino , Azul de Metileno/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Ratos , Ratos WistarRESUMO
The photosensitized aquation of pentaammine(pyridine)ruthenium(II) by several dyes has been studied under conditions where only the sensitizers absorb light. The ratio of the quantum yields for ammine and pyridine substitution was the same as that for direct photoaquation. Sensitization was effective with singlet sensitizers Rhodamine-B (17 452 cm(-)(1)) and Safranine-T (17 690 cm(-)(1)), as well as the triplet sensitizer biacetyl (19 000 cm(-)(1)), but no reaction was observed with Neutral-Red (16 900 cm(-)(1)). The results indicate that the excited state precursor of the observed photosubstitution in the complex lies in the energy range between 17 000 and 17 700 cm(-)(1).
RESUMO
Ruthenium complexes including nitrosyl or nitrite complexes are particularly interesting because they can not only scavenge but also release nitric oxide in a controlled manner, regulating the NO-level in vivo. The judicious choice of ligands attached to the [RuNO] core has been shown to be a suitable strategy to modulate NO reactivity in these complexes. In order to understand the influence of different equatorial ligands on the electronic structure of the Ru-NO chemical bonding, and thus on the reactivity of the coordinated NO, we propose an investigation of the nature of the Ru-NO chemical bond by means of energy decomposition analysis (EDA), considering tetraamine and tetraazamacrocycles as equatorial ligands, prior to and after the reduction of the {RuNO}(6) moiety by one electron. This investigation provides a deep insight into the Ru-NO bonding situation, which is fundamental in designing new ruthenium nitrosyl complexes with potential biological applications.
RESUMO
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(κ(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl·H(2)O ((1-carboxypropyl)cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 °C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 ± 1 °C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of â¼3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl)cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at â¼8.0 and â¼11.5. Upon electrochemical reduction or under irradiation with light (λ(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].
Assuntos
Complexos de Coordenação/química , Compostos Heterocíclicos/química , Óxido Nítrico/química , Rutênio/química , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Conformação Molecular , Oxirredução , Fotólise , TermodinâmicaRESUMO
Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M). After voltage stabilization, a single concentration (10−6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan ...
Fundamento: As tetra-aminas de rutênio cada vez mais se destacam como carreadoras da molécula de óxido nítrico. Desse modo, estudos farmacológicos tornam-se altamente relevantes, afim de melhor compreender o mecanismo de ação envolvido. Objetivo: Avaliar a resposta vascular das tetra-aminas trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO)(Cyclan)](PF6)2 e trans-[RuII(NH3)4(4-acPy)(NO)]3+. Métodos: Anéis de aorta foram pré-contraídos com noradrenalina (10-6M). Após estabilização da tensão, concentração única (10-6M) dos compostos foi adicionada ao banho de incubação. As respostas foram registradas ao longo de 120 minutos. A integridade vascular foi avaliada funcionalmente (acetilcolina 10-6M; nitroprussiato de sódio 10-6M) e histologicamente Resultados: A análise histológica confirmou a presença ou não de células endoteliais nos tecidos analisados. Todos os complexos alteraram a resposta contrátil induzida pela noradrenalina, resultando em aumento de tônus seguido de efeito relaxante. Em anéis com endotélio, a inibição do óxido nítrico endotelial causou redução do efeito contrátil da piridina óxido nítrico. Não foram observadas respostas significativas em anéis com endotélio referente ao composto cyclan óxido nítrico. Por outro lado, em anéis sem endotélio, a inibição da guanilato ciclase reduziu significativamente a resposta contrátil dos complexos piridina óxido nítrico e cyclan óxido nítrico, levando ambos os compostos a um efeito relaxante. Conclusão: Os resultados obtidos demonstram que o efeito vascular dos complexos avaliados apresentaram diminuição no tônus vascular induzido pela noradrenalina (10-6M) ao final do tempo de incubação, em anéis com e sem endotélio, indicando liberação lenta da molécula de óxido nítrico do composto estudado e sugerindo que os ligantes causaram estabilidade química à molécula. Demonstramos que a ligação rutênio óxido nítrico é mais estável quando utilizamos os ligantes piridina e cyclan para a formulação ...
Assuntos
Animais , Humanos , Camundongos , Apoptose/fisiologia , MicroRNAs/fisiologia , Células Endoteliais/fisiologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/fisiopatologia , Ribonuclease III/deficiência , Ribonuclease III/fisiologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/fisiologiaRESUMO
The complex fac-[Ru(NO)Cl2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.H2O (1-carboxypropyl)cyclam=3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid) was prepared in a one pot reaction by mixing equimolar amounts of RuNOCl 3 and (1-carboxypropyl)cyclam and was characterized by X-ray crystallography, electrospray ionization tandem mass spectrometry (ESI-MS/MS), elemental analysis, NMR, and electronic and vibrational (IR) spectroscopies. fac-[Ru(NO)Cl 2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.H2O crystallizes in the triclinic, space group P1, No. 2, with unit cell parameters of a=8.501(1) A, b=9.157(1) A, c=14.200(1) A, alpha=72.564(5) degrees , beta=82.512(5) degrees , gamma=80.308(5) degrees , and Z=2. The Ru-N interatomic distance and bond angle in the [Ru-NO] unit are 1.739(2) A and 167.7(2) degrees , respectively. ESI-MS/MS shows characteristic dissociation chemistry that initiates by HCl or NO loss. The IR spectrum displays a nu(NO) at 1881 cm(-1) indicating a nitrosonium character. The electronic spectrum shows absorptions bands at 264 nm (log epsilon=3.27), 404 nm (log epsilon=2.53), and 532 nm (log epsilon=1.88). (1)H and (13)C NMR are in agreement with the proposed molecular structure, which shows a very singular architecture where the cyclam ring N (with the carboxypropyl pendant arm) is not coordinated to the ruthenium resulting in a kappa(3) instead of the expected kappa(4) denticity.
RESUMO
The synthesis of cis-[Ru(II)(cyclen)(L)(x)](n+) (cyclen = 1,4,7,10-tetraazacyclododecane and L = 2,2'-bipyridine (bpy), phenanthroline (phen) or 4-cyanopyridinium (4-NCpyH(+))) is reported. The freshly prepared complexes are stable in aprotic solvents and cyclen undergoes oxidative dehydrogenation reaction at high pH. These compounds also present solvent dependent conformational isomerization.
RESUMO
The hypotensive effect of RuNO was investigated in acute and chronic hypertensive rats, as well as in normotensive rats. Acute hypertension rats were used with 30% increase on basal BP (phenylephrine, angiotensin II (Ang II), N(G)-nitro-L-arginine methyl ester (L-NAME), and adult spontaneously hypertensive rats (SHR) (basal BP 168 +/- 3 mm Hg) were used as models for chronic hypertension. Rats were implanted with catheters (iv/ia) for BP measurements and for in bolus administration of RuNO, sodium nitroprusside (SNP), and acetylcholine (Ach) (10, 20, 40 nmol/kg, iv). The principal findings of this study were: (i) The hypotensive response to RuNO was 150% higher in acutely (phenylephrine and Ang II) and chronically (SHR) hypertensive rats than in normotensive rats, except in the case of L-NAME-induced hypertension (deltaMAP = 10 +/- 1.4 mm Hg). Chronic SHR showed 60% increase (deltaMAP = 19 +/- 0.8 mm Hg) in the effect compared to normotensive rats. (ii) The hypotensive response to SNP was lower (60%) in hypertensive rats than in normotensive rats, when compared to RuNO. However, the responses were similar in L-NAME-induced hypertension (deltaMAP = 30 +/- 2 mm Hg). (iii) The vasodilator response to Ach was increased in rats with Ang II-induced hypertension (deltaMAP = 53 +/- 1 mm Hg) and in SHR (deltaMAP = 67 +/- 3 mm Hg). RuNO response was more potent than SNP in hypertensive models and the increment in relation to normotensive was observed in the phenylephrine- and L-NAME-treated rats. This response could be correlated to the different endothelial dysfunction present in each model.
Assuntos
Modelos Animais de Doenças , Endotélio Vascular/fisiologia , Hipertensão/tratamento farmacológico , Doadores de Óxido Nítrico/farmacologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Masculino , Doadores de Óxido Nítrico/administração & dosagem , Nitroprussiato/farmacologia , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacologia , Ratos , Ratos Wistar , Compostos de Rutênio/administração & dosagem , Compostos de Rutênio/farmacologia , Vasodilatadores/administração & dosagemRESUMO
The hypotensive effect and the acute toxicity of trans-[Ru(NH(3))(4)P(OEt)(3)(NO)](PF(6))(3) (RuNO) were investigated in conscious animals. The approximate lethal dose of RuNO is 257.5 micromol/kg in mice i.p. and the IC(50) values evaluated for V79 culture cell cytotoxicity were higher than 2.0 mM, suggesting that the ruthenium species are significantly less toxic than Na(2)[Fe(CN)(5)(NO)] (SNP) species. The RuNO hypotensive effect measured through in-bolus intravenous administration in chronically instrumented normotensive and hypotensive adult male Wistar rats is similar to that exhibited by equivalent doses of SNP. The hypotensive effect of the ruthenium complex is fully inhibited by methylene blue and PTIO, suggesting that the RuNO effect is likely to be primarily dependent on the NO-[cGMP] pathway in the smooth muscle cells.