Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Immunol ; 23(12): 1735-1748, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456734

RESUMO

The non-pathogenic TH17 subset of helper T cells clears fungal infections, whereas pathogenic TH17 cells cause inflammation and tissue damage; however, the mechanisms controlling these distinct responses remain unclear. Here we found that fungi sensing by the C-type lectin dectin-1 in human dendritic cells (DCs) directed the polarization of non-pathogenic TH17 cells. Dectin-1 signaling triggered transient and intermediate expression of interferon (IFN)-ß in DCs, which was mediated by the opposed activities of transcription factors IRF1 and IRF5. IFN-ß-induced signaling led to integrin αvß8 expression directly and to the release of the active form of the cytokine transforming growth factor (TGF)-ß indirectly. Uncontrolled IFN-ß responses as a result of IRF1 deficiency induced high expression of the IFN-stimulated gene BST2 in DCs and restrained TGF-ß activation. Active TGF-ß was required for polarization of non-pathogenic TH17 cells, whereas pathogenic TH17 cells developed in the absence of active TGF-ß. Thus, dectin-1-mediated modulation of type I IFN responses allowed TGF-ß activation and non-pathogenic TH17 cell development during fungal infections in humans.


Assuntos
Células Dendríticas , Interferon Tipo I , Micoses , Humanos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Células Th17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Micoses/imunologia
2.
Proc Natl Acad Sci U S A ; 120(32): e2305094120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523560

RESUMO

Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining (MAT) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By generating additional chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere-flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight toward the identification of a sexual cycle in Malassezia, with possible implications for pathogenicity.


Assuntos
Basidiomycota , Malassezia , Humanos , Malassezia/genética , Evolução Molecular , Basidiomycota/fisiologia , Fungos/genética , Filogenia , Reprodução/genética , Genes Fúngicos Tipo Acasalamento/genética
3.
Nat Immunol ; 13(3): 246-54, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267217

RESUMO

Production of the proinflammatory cytokine interleukin 1ß (IL-1ß) by dendritic cells is crucial in host defense. Here we identify a previously unknown role for dectin-1 in the activation of a noncanonical caspase-8 inflammasome in response to fungi and mycobacteria. Dectin-1 induced both the production and maturation of IL-1ß through signaling routes mediated by the kinase Syk. Whereas the CARD9-Bcl-10-MALT1 scaffold directed IL1B transcription, the recruitment of MALT1-caspase-8 and ASC into this scaffold was crucial for processing of pro-IL-1ß by caspase-8. In contrast to activation of the canonical caspase-1 inflammasome, which requires additional activation of cytosolic receptors, activation of the noncanonical caspase-8 inflammasome was independent of pathogen internalization. Thus, dectin-1 acted as an extracellular sensor for pathogens that induced both IL-1ß production and maturation through a noncanonical caspase-8-dependent inflammasome for protective immunity.


Assuntos
Caspase 8/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Lectinas Tipo C/imunologia , Candida albicans/imunologia , Ativação Enzimática , Espaço Extracelular/imunologia , Humanos , Lectinas Tipo C/metabolismo , Mycobacterium/imunologia , Transdução de Sinais
4.
Exp Dermatol ; 33(1): e14952, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974545

RESUMO

Seborrheic dermatitis (SD) is a chronic inflammatory skin disease characterized by erythematous papulosquamous lesions in sebum rich areas such as the face and scalp. Its pathogenesis appears multifactorial with a disbalanced immune system, Malassezia driven microbial involvement and skin barrier perturbations. Microbial involvement has been well described in SD, but skin barrier involvement remains to be properly elucidated. To determine whether barrier impairment is a critical factor of inflammation in SD alongside microbial dysbiosis, a cross-sectional study was performed in 37 patients with mild-to-moderate facial SD. Their lesional and non-lesional skin was comprehensively and non-invasively assessed with standardized 2D-photography, optical coherence tomography (OCT), microbial profiling including Malassezia species identification, functional skin barrier assessments and ceramide profiling. The presence of inflammation was established through significant increases in erythema, epidermal thickness, vascularization and superficial roughness in lesional skin compared to non-lesional skin. Lesional skin showed a perturbed skin barrier with an underlying skewed ceramide subclass composition, impaired chain elongation and increased chain unsaturation. Changes in ceramide composition correlated with barrier impairment indicating interdependency of the functional barrier and ceramide composition. Lesional skin showed significantly increased Staphylococcus and decreased Cutibacterium abundances but similar Malassezia abundances and mycobial composition compared to non-lesional skin. Principal component analysis highlighted barrier properties as main discriminating features. To conclude, SD is associated with skin barrier dysfunction and changes in the ceramide composition. No significant differences in the abundance of Malassezia were observed. Restoring the cutaneous barrier might be a valid therapeutic approach in the treatment of facial SD.


Assuntos
Dermatite Seborreica , Malassezia , Humanos , Dermatite Seborreica/microbiologia , Ceramidas , Estudos Transversais , Epiderme/patologia , Pele/microbiologia , Inflamação/patologia
5.
Antonie Van Leeuwenhoek ; 117(1): 22, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217778

RESUMO

A new species of the yeast genus Blastobotrys was discovered on ancient ship timbers in the Netherlands. The species had developed on the wood of a river barge dating to the Roman period. The growth occurred after the preservative polyethylene glycol (PEG 4000) was washed out of some of the timbers due to an undetected leak in the storage unit. Mycological analysis of various timber samples revealed the presence of Microascus melanosporus (predominant), Microascus paisii, a member of the Acremonium chrysogenum-clade, and a new Blastrobotrys species. The new species produced sporothrix-like conidiophores with clavate blastoconidia (3-7 × 1-3.5 µm) and was found to be osmotolerant, capable of growth on low water activity media like malt yeast 50% glucose agar (MY50G). In this article we formally describe and introduce Blastrobotrys nigripullensis (CBS 17879 T) based on its morphology, physiology and phylogenetic placement.


Assuntos
Saccharomycetales , Filogenia , Países Baixos , Leveduras , DNA Fúngico , Análise de Sequência de DNA , Técnicas de Tipagem Micológica , Madeira/microbiologia
6.
Yeast ; 40(1): 7-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168284

RESUMO

A new species of the yeast genus Blastobotrys was discovered during a worldwide survey of culturable xerophilic fungi in house dust. Several culture-dependent and independent studies from around the world detected the same species from a wide range of substrates including indoor air, cave wall paintings, bats, mummies, and the iconic self-portrait of Leonardo da Vinci from ca 1512. However, none of these studies identified their strains, clones, or OTUs as Blastobotrys. We introduce the new species as Blastobotrys davincii f.a., sp. nov. (holotype CBS H-24879) and delineate it from other species using morphological, phylogenetic, and physiological characters. The new species of asexually (anamorphic) budding yeast is classified in Trichomonascaceae and forms a clade along with its associated sexual state genus Trichomonascus. Despite the decade-old requirement to use a single generic name for fungi, both names are still used. Selection of the preferred name awaits a formal nomenclatural proposal. We present arguments for adopting Blastobotrys over Trichomonascus and introduce four new combinations as Blastobotrys allociferrii (≡ Candida allociferrii), B. fungorum (≡ Sporothrix fungorum), B. mucifer (≡ Candida mucifera), and Blastobotrys vanleenenianus (≡ Trichomonascus vanleenenianus). We provide a nomenclatural review and an accepted species list for the 37 accepted species in the Blastobotrys/Trichomonascus clade. Finally, we discuss the identity of the DNA clones detected on the da Vinci portrait, and the importance of using appropriate media to isolate xerophilic or halophilic fungi.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Filogenia , Análise de Sequência de DNA , DNA Fúngico/genética
7.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762625

RESUMO

Facial seborrheic dermatitis (SD) is an inflammatory skin disease characterized by erythematous and scaly lesions on the skin with high sebaceous gland activity. The yeast Malassezia is regarded as a key pathogenic driver in this disease, but increased Staphylococcus abundances and barrier dysfunction are implicated as well. Here, we evaluated the antimicrobial peptide omiganan as a treatment for SD since it has shown both antifungal and antibacterial activity. A randomized, patient- and evaluator-blinded trial was performed comparing the four-week, twice daily topical administration of omiganan 1.75%, the comparator ketoconazole 2.00%, and placebo in patients with mild-to-moderate facial SD. Safety was monitored, and efficacy was determined by clinical scoring complemented with imaging. Microbial profiling was performed, and barrier integrity was assessed by trans-epidermal water loss and ceramide lipidomics. Omiganan was safe and well tolerated but did not result in a significant clinical improvement of SD, nor did it affect other biomarkers, compared to the placebo. Ketoconazole significantly reduced the disease severity compared to the placebo, with reduced Malassezia abundances, increased microbial diversity, restored skin barrier function, and decreased short-chain ceramide Cer[NSc34]. No significant decreases in Staphylococcus abundances were observed compared to the placebo. Omiganan is well tolerated but not efficacious in the treatment of facial SD. Previously established antimicrobial and antifungal properties of omiganan could not be demonstrated. Our multimodal characterization of the response to ketoconazole has reaffirmed previous insights into its mechanism of action.


Assuntos
Dermatite Seborreica , Malassezia , Humanos , Cetoconazol/farmacologia , Cetoconazol/uso terapêutico , Dermatite Seborreica/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Peptídeos Antimicrobianos , Resultado do Tratamento
8.
FEMS Yeast Res ; 21(7)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562093

RESUMO

Malassezia furfur is a yeast species belonging to Malasseziomycetes, Ustilaginomycotina and Basidiomycota that is found on healthy warm-blooded animal skin, but also involved in various skin disorders like seborrheic dermatitis/dandruff and pityriasis versicolor. Moreover, Malassezia are associated with bloodstream infections, Crohn's disease and pancreatic carcinoma. Recent advances in Malassezia genomics and genetics have focused on the nuclear genome. In this work, we present the M. furfur mitochondrial (mt) genetic heterogenicity with full analysis of 14 novel and six available M. furfur mt genomes. The mitogenome analysis reveals a mt gene content typical for fungi, including identification of variable mt regions suitable for intra-species discrimination. Three of them, namely the trnK-atp6 and cox3-nad3 intergenic regions and intron 2 of the cob gene, were selected for primer design to identify strain differences. Malassezia furfur strains belonging to known genetic variable clusters, based on AFLP and nuclear loci, were assessed for their mt variation using PCR amplification and sequencing. The results suggest that these mt regions are excellent molecular markers for the typing of M. furfur strains and may provide added value to nuclear regions when assessing evolutionary relationships at the intraspecies level.


Assuntos
Genoma Mitocondrial , Malassezia , Tinha Versicolor , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Malassezia/genética , Mitocôndrias
9.
Med Mycol ; 59(3): 215-234, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099634

RESUMO

Malassezia yeasts are commensal microorganisms occurring on the skin of humans and animals causing dermatological disorders or systemic infections in severely immunocompromised hosts. Despite attempts to control such yeast infections with topical and systemic antifungals, recurrence of clinical signs of skin infections as well as treatment failure in preventing or treating Malassezia furfur fungemia have been reported most likely due to wrong management of these infections (e.g., due to early termination of treatment) or due to the occurrence of resistant phenomena. Standardized methods for in vitro antifungal susceptibility tests of these yeasts are still lacking, thus resulting in variable susceptibility profiles to azoles among Malassezia spp. and a lack of clinical breakpoints. The inherent limitations to the current pharmacological treatments for Malassezia infections both in humans and animals, stimulated the interest of the scientific community to discover new, effective antifungal drugs or substances to treat these infections. In this review, data about the in vivo and in vitro antifungal activity of the most commonly employed drugs (i.e., azoles, polyenes, allylamines, and echinocandins) against Malassezia yeasts, with a focus on human bloodstream infections, are summarized and their clinical implications are discussed. In addition, the usefulness of alternative compounds is discussed.


Assuntos
Antifúngicos/farmacologia , Dermatomicoses/tratamento farmacológico , Malassezia/efeitos dos fármacos , Preparações Farmacêuticas/química , Sepse/tratamento farmacológico , Antifúngicos/classificação , Humanos , Testes de Sensibilidade Microbiana , Preparações Farmacêuticas/isolamento & purificação , Sepse/microbiologia , Pele
10.
Fungal Genet Biol ; 129: 16-29, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30953839

RESUMO

A total of 476 European isolates (310 Cryptococcus neoformans var. grubii, 150 C. neoformans var. neoformans, and 16 C. gattii species complex) from both clinical and environmental sources were analyzed by multi-locus sequence typing. Phylogenetic and population genetic analyses were performed. Sequence analysis identified 74 sequence types among C. neoformans var. neoformans (VNIV), 65 among C. neoformans var. grubii (56 VNI, 8 VNII, 1 VNB), and 5 among the C. gattii species complex (4 VGI and 1 VGIV) isolates. ST23 was the most frequent genotype (22%) among VNI isolates which were mostly grouped in a large clonal cluster including 50% of isolates. Among VNIV isolates, a predominant genotype was not identified. A high percentage of autochthonous STs were identified in both VNI (71%) and VNIV (96%) group of isolates. The 16 European C. gattii species complex isolates analyzed in the present study originated all from the environment and all belonged to a large cluster endemic in the Mediterranean area. Population genetic analysis confirmed that VNI group of isolates were characterized by low variability and clonal expansion while VNIV by a higher variability and a number of recombination events. However, when VNI and VNIV environmental isolates were compared, they showed a similar population structure with a high percentage of shared mutations and the absence of fixed mutations. Also linkage disequilibrium analysis reveals differences between clinical and environmental isolates showing a key role of PLB1 allele combinations in host infection as well as the key role of LAC1 allele combinations for survival of the fungus in the environment. The present study shows that genetic comparison of clinical and environmental isolates represents a first step to understand the genetic characteristics that cause the shift of some genotypes from a saprophytic to a parasitic life style.


Assuntos
Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Genótipo , Filogenia , Animais , Microbiologia Ambiental , Europa (Continente) , Genética Populacional , Humanos , Região do Mediterrâneo , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica
11.
FEMS Yeast Res ; 19(8)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665278

RESUMO

Cryptococcus spp. are fungal species belonging to Tremellomycetes, Agaricomycotina, Basidiomycota, and several members are responsible for cryptococcosis, one of the most ubiquitous human mycoses. Affecting mainly immunosuppressed patients, but also immunocompetent ones, the members of this genus present a high level of genetic diversity. In this study, two mitochondrial intergenic regions, i.e. nad1-cob and cob-rps3, were tested for the intra- or interspecies discrimination and identification of strains and species of the genus Cryptococcus. Phylogenetic trees were constructed based on individual and concatenated sequences from representative pathogenic strains of the Cryptococcus neoformans/Cryptococcus gattii complex, representing serotypes and AFLP genotypes of all newly introduced species of this complex. Using both intergenic regions, as well as the concatenated dataset, the strains clustered in accordance with the new taxonomy. These results suggest that identification of Cryptococcus strains is possible by employing these mitochondrial intergenic regions using PCR amplification as a quick and effective method to elucidate genotypic and taxonomic differences. Thus, these regions may be applicable to a broad range of clinical studies, leading to a rapid recognition of the clinical profiles of patients.


Assuntos
Cryptococcus/genética , Cryptococcus/patogenicidade , DNA Fúngico/genética , DNA Intergênico , Genes Mitocondriais , Criptococose/microbiologia , DNA Ribossômico/genética , Humanos , Glicoproteínas de Membrana/genética , Mitocôndrias/genética , Técnicas de Tipagem Micológica , NADH Desidrogenase/genética , Filogenia , Proteínas Ribossômicas/genética
12.
Med Mycol ; 56(suppl_1): S10-S25, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538738

RESUMO

Malassezia are lipid dependent basidiomycetous yeasts that inhabit the skin and mucosa of humans and other warm-blooded animals, and are a major component of the skin microbiome. They occur as skin commensals, but are also associated with various skin disorders and bloodstream infections. The genus currently comprises 17 species and has recently been assigned its own class, Malasseziomycetes. Importantly, multiple Malassezia species and/or genotypes may cause unique or similar pathologies and vary in their antifungal susceptibility. In addition to culture-based approaches, culture-independent methods have added to our understanding of Malassezia presence and abundance and their relationship to pathogenicity. Moreover, these novel approaches have suggested a much wider-spread presence, including other human body parts and even other ecosystems, but their role in these arenas requires further clarification. With recent successful transformation and genetic engineering of Malassezia, the role of specific genes in pathogenesis can now be studied. We suggest that characterizing the metabolic impact of Malassezia communities rather than species identification is key in elucidation of pathophysiological associations. Finally, the increasing availability of genome sequences may provide key information aiding faster diagnostics, and understanding of the biochemical mechanisms for Malassezia skin adaptation and the design of future drugs.


Assuntos
Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , Ecologia , Malassezia/fisiologia , Animais , Biodiversidade , Dermatomicoses/fisiopatologia , Farmacorresistência Fúngica/genética , Genes Fúngicos , Genômica , Humanos , Malassezia/classificação , Malassezia/efeitos dos fármacos , Malassezia/genética
13.
PLoS Genet ; 11(11): e1005614, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26539826

RESUMO

Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.


Assuntos
Adaptação Fisiológica , Genes Fúngicos , Filogenia , Pele/microbiologia , Transferência Genética Horizontal , Humanos , Malassezia/classificação , Malassezia/genética , Malassezia/fisiologia
14.
Mycopathologia ; 182(5-6): 591-596, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27905002

RESUMO

BACKGROUND: The reports on disseminated candidiasis in dogs so far describe at least one predisposing factor. This case report, however, highlights candidiasis in a dog without any known predisposition. PATIENT: A 1.5-year-old intact female Hovawart dog was presented with subcutaneous nodules and polyuria/polydipsia. An excisional biopsy revealed a chronic pyogranulomatous and necrotizing inflammation with mycotic structures. The patient became febrile and lethargic, and developed lameness. METHODS: A physical examination, blood tests, urinalysis, thoracic radiographs, abdominal ultrasonography of the abdomen, fine-needle aspiration biopsies, and a culture of a subcutaneous nodule aspirate were obtained. Selected sections of multiple organs were collected for routine histology postmortem. The isolate and a subcutaneous mass were subjected to molecular identification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. RESULTS: Clinical, laboratory, and radiological findings were consistent with a granulomatous chronic systemic inflammation. Cytology and histology showed a pyogranulomatous and necrotizing inflammation with myriads of intra- and extra-cellular yeasts and extracellular hyphae. Culture yielded numerous yeast colonies, which appeared Candida albicans-like, but showed a negative serum test and a low identification in API 20 C AUX. Nucleic acid sequences showed homology with the C. albicans-type strain CBS 562. Multilocus sequence typing (MLST) resulted in a new type with designation DST121. The identification of the isolates was confirmed by MALDI-TOF-MS analysis. CONCLUSION AND CLINICAL IMPORTANCE: Future MLST typing and investigation of virulence can provide further evidence whether this MLST-type is associated with clinical cases of disseminated candidiasis without an apparent predisposing condition.


Assuntos
Candida albicans/isolamento & purificação , Candidíase Invasiva/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Animais , Candida albicans/classificação , Candidíase Invasiva/diagnóstico , Candidíase Invasiva/patologia , Doenças do Cão/microbiologia , Cães , Feminino , Tipagem de Sequências Multilocus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
FEMS Yeast Res ; 16(4)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27188887

RESUMO

In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.


Assuntos
Cryptococcus gattii/isolamento & purificação , Cryptococcus neoformans/isolamento & purificação , Microbiologia Ambiental , Árvores/microbiologia , Cryptococcus gattii/classificação , Cryptococcus gattii/genética , Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Genótipo , Região do Mediterrâneo , Tipagem Molecular , Técnicas de Tipagem Micológica
16.
Fungal Genet Biol ; 78: 16-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25721988

RESUMO

Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.


Assuntos
Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Variação Genética , Genótipo , Cryptococcus neoformans/química , Tipagem Molecular , Técnicas de Tipagem Micológica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
FEMS Yeast Res ; 15(6)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136514

RESUMO

Detection, identification and classification of yeasts have undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, as will use of phylogeny for prediction of biotechnological applications.


Assuntos
Redes e Vias Metabólicas/genética , Filogenia , Leveduras/classificação , Leveduras/genética , Biotecnologia/métodos , Código de Barras de DNA Taxonômico , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microbiologia Industrial/métodos , RNA Ribossômico/genética
18.
J Clin Microbiol ; 52(8): 3023-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920782

RESUMO

An interlaboratory study using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to determine the identification of clinically important yeasts (n = 35) was performed at 11 clinical centers, one company, and one reference center using the Bruker Daltonics MALDI Biotyper system. The optimal cutoff for the MALDI-TOF MS score was investigated using receiver operating characteristic (ROC) curve analyses. The percentages of correct identifications were compared for different sample preparation methods and different databases. Logistic regression analysis was performed to analyze the association between the number of spectra in the database and the percentage of strains that were correctly identified. A total of 5,460 MALDI-TOF MS results were obtained. Using all results, the area under the ROC curve was 0.95 (95% confidence interval [CI], 0.94 to 0.96). With a sensitivity of 0.84 and a specificity of 0.97, a cutoff value of 1.7 was considered optimal. The overall percentage of correct identifications (formic acid-ethanol extraction method, score ≥ 1.7) was 61.5% when the commercial Bruker Daltonics database (BDAL) was used, and it increased to 86.8% by using an extended BDAL supplemented with a Centraalbureau voor Schimmelcultures (CBS)-KNAW Fungal Biodiversity Centre in-house database (BDAL+CBS in-house). A greater number of main spectra (MSP) in the database was associated with a higher percentage of correct identifications (odds ratio [OR], 1.10; 95% CI, 1.05 to 1.15; P < 0.01). The results from the direct transfer method ranged from 0% to 82.9% correct identifications, with the results of the top four centers ranging from 71.4% to 82.9% correct identifications. This study supports the use of a cutoff value of 1.7 for the identification of yeasts using MALDI-TOF MS. The inclusion of enough isolates of the same species in the database can enhance the proportion of correctly identified strains. Further optimization of the preparation methods, especially of the direct transfer method, may contribute to improved diagnosis of yeast-related infections.


Assuntos
Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/classificação , Humanos , Micoses/diagnóstico , Micoses/microbiologia , Curva ROC , Sensibilidade e Especificidade , Leveduras/química , Leveduras/isolamento & purificação
20.
J Clin Microbiol ; 51(8): 2491-500, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23678074

RESUMO

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories.


Assuntos
Técnicas de Laboratório Clínico/métodos , Micologia/métodos , Micoses/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/classificação , Leveduras/isolamento & purificação , Grécia , Humanos , Micoses/microbiologia , Catar , Romênia , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Fatores de Tempo , Leveduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA