Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(51): E7138-47, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26553986

RESUMO

Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH's effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action.


Assuntos
Anfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Transporte Biológico Ativo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Clatrina/metabolismo , Cocaína/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Endocitose/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/metabolismo
2.
Cereb Cortex ; 26(5): 2115-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759333

RESUMO

Cortical excitatory and inhibitory synapses are disrupted in schizophrenia, the symptoms of which often emerge during adolescence, when cortical excitatory synapses undergo pruning. In auditory cortex, a brain region implicated in schizophrenia, little is known about the development of excitatory and inhibitory synapses between early adolescence and young adulthood, and how these changes impact auditory cortex function. We used immunohistochemistry and quantitative fluorescence microscopy to quantify dendritic spines and GAD65-expressing inhibitory boutons in auditory cortex of early adolescent, late adolescent, and young adult mice. Numbers of spines decreased between early adolescence and young adulthood, during which time responses increased in an auditory cortex-dependent sensory task, silent gap-prepulse inhibition of the acoustic startle reflex (gap-PPI). Within-bouton GAD65 protein and GAD65-expressing bouton numbers decreased between late adolescence and young adulthood, a delay in onset relative to spine and gap-PPI changes. In mice lacking the spine protein kalirin, there were no significant changes in spine number, within-bouton GAD65 protein, or gap-PPI between adolescence and young adulthood. These results illustrate developmental changes in auditory cortex spines, inhibitory boutons, and auditory cortex function between adolescence and young adulthood, and provide insights into how disrupted adolescent neurodevelopment could contribute to auditory cortex synapse pathology and auditory impairments.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Espinhas Dendríticas/fisiologia , Inibição Pré-Pulso/fisiologia , Sinapses/fisiologia , Animais , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo de Sobressalto , Esquizofrenia/fisiopatologia
3.
Nicotine Tob Res ; 18(9): 1861-1868, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26764255

RESUMO

INTRODUCTION: Although nearly 90% of current smokers initiated tobacco use during adolescence, little is known about reinforcement by nicotine in adolescents. Researchers are currently investigating whether a potential public health policy setting a tobacco product standard with very low nicotine levels would improve public health, and it is essential to understand whether data generated in adults translates to adolescents, particularly as it relates to the threshold dose of nicotine required to support smoking. The present study compared self-administration of low doses of nicotine between adolescent and adult rats. METHODS: Adolescent (postnatal day [P] 30) and adult (P90) male and female rats were allowed to nosepoke to receive intravenous infusions of nicotine (3-100 µg/kg/infusion) during 16 daily 1-hour sessions. RESULTS: At 10 µg/kg/infusion nicotine, adolescent rats earned significantly fewer infusions than adults. When responding for 30 µg/kg/infusion nicotine, rats of both ages earned a similar number of infusions; however, there were subtle differences in the distribution of infusions across the 1-hour session. No sex differences were apparent in either age group at any dose. CONCLUSIONS: These results demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. However, at nicotine doses that support self-administration in both age groups, adolescent and adult rats do not differ in acquisition or number of infusions earned. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults may be sufficient to reduce the acquisition of smoking in adolescents. IMPLICATIONS: The results of the present studies demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults will be sufficient to reduce the acquisition of smoking in adolescents.


Assuntos
Comportamento do Adolescente , Nicotina/administração & dosagem , Adolescente , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
4.
Nicotine Tob Res ; 18(9): 1920-3, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27178831

RESUMO

INTRODUCTION: Numerous studies have shown that nicotine (NIC) can enhance the reinforcing effects of non-NIC stimuli through a nonassociative mechanism. To date, it is unclear whether NIC reinforcement enhancement serves to increase behaviors motivated by rewarding stimuli only, or whether NIC potentiates behavior motivated by all stimuli, regardless of valence. METHODS: The current study used a place conditioning procedure to examine whether acute NIC injection modulates avoidance of an environment previously associated with an aversive stimulus. Separate groups of rats underwent place conditioning using either lithium chloride (125mg/kg/ml, i.p.) or footshock (0.75 mA) as the aversive stimulus. Other rats served as nonconditioned controls. The magnitude of place avoidance was assessed after acute NIC (0.1 or 0.4mg/kg/ml, s.c.) or saline. RESULTS: Rats avoided chambers previously paired with either lithium chloride or footshock, and conditioned place avoidance was significantly enhanced by NIC pre-treatment. CONCLUSIONS: These results demonstrate that the ability of NIC to enhance motivated behavior extends to behaviors elicited by aversive stimuli, evidence that NIC affects behavior motivated by a broader range of stimuli than previously appreciated. IMPLICATIONS: The current study examined whether the reinforcement enhancement properties of NIC apply to aversive stimuli by testing NIC enhancement of conditioned place avoidance in rats. The results demonstrate that NIC enhances the motivational impact of these distinct aversive stimuli, providing novel evidence that NIC affects behavior motivated by a broader range of stimuli than has previously been demonstrated.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Alimentos , Cloreto de Lítio , Nicotina/farmacologia , Fumar , Animais , Aprendizagem por Associação/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infusões Parenterais , Masculino , Modelos Animais , Nicotina/administração & dosagem , Ratos , Ratos Sprague-Dawley
5.
Learn Mem ; 21(11): 606-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25322796

RESUMO

Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP response-element binding protein (CREB) in the nucleus accumbens (NAc) of rats, and that CS-evoked ERK activation is critical for CS control over reward seeking. To elucidate the mechanism that mediates CS-driven ERK activation in the NAc, we selectively blocked NMDA glutamate or D1 dopamine receptors in the NAc. To determine whether CS-driven ERK and CREB activation are linked, we selectively blocked ERK signaling in the NAc. We found that both NMDA and D1 receptors are critical for CS-driven ERK signaling in the NAc, and that this recruitment of the ERK cascade is responsible for increased CREB activation in the presence of the CS. Our findings suggest that activation of the NMDAR-D1R/ERK/CREB signal transduction pathway plays a critical role in the control of reward-seeking behavior by reward-predictive cues.


Assuntos
Comportamento Apetitivo/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Sistema de Sinalização das MAP Quinases , Núcleo Accumbens/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa
6.
Neurobiol Learn Mem ; 106: 71-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23871745

RESUMO

Explicit and implicit learning and memory networks exist where each network can facilitate or inhibit cognition. Clinical evidence suggests that implicit networks are relatively preserved after traumatic brain injury (TBI). Non-spatial pre-training (NSPT) in the Morris Water Maze (MWM) provides the necessary behavioral components to complete the task, while limiting the formation of spatial maps. Our study utilized NSPT in the MWM to assess implicit and explicit learning and memory system deficits in the controlled cortical impact (CCI) model of TBI. 76 adult male Sprague-Dawley rats were divided: CCI vs. sham surgery, NSPT vs. No-NSPT, and cued vs. non-cued groups. NSPT occurred for 4d prior to surgery (dynamic hidden platform location, extra-maze cues covered, static pool entry point). Acquisition (d14-18), Probe/Visible Platform (d19), and Reversal (d20-21) trials were conducted with or without extra-maze cues. Novel time allocation and search strategy selection metrics were utilized. Results indicated implicit and explicit learning/memory networks are distinguishable in the MWM. In the cued condition, NSPT reduced thigmotaxis, improved place learning, and largely eliminated the apparent injury-induced deficits typically observed between untrained CCI and sham rats. However, among NSPT groups, incorporation of cues into search strategy selection for CCI rats was relatively impaired compared to shams. Non-cued condition performance showed sham/NSPT and CCI/NSPT rats perform similarly, suggesting implicit memory networks are largely intact 2weeks after CCI. Place learning differences between CCI/NSPT and sham/NSPT rats more accurately reflect spatial deficits in our CCI model compared to untrained controls. These data suggest NSPT as a clinically relevant construct for evaluating potential neurorestorative and neuroprotective therapies. These findings also support development of non-spatial cognitive training paradigms for evaluating rehabilitation relevant combination therapies.


Assuntos
Lesões Encefálicas/psicologia , Aprendizagem/fisiologia , Transtornos da Memória/psicologia , Memória/fisiologia , Animais , Lesões Encefálicas/reabilitação , Córtex Cerebral/lesões , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/reabilitação , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Neuron ; 110(4): 600-612, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914921

RESUMO

As neuroscience projects increase in scale and cross international borders, different ethical principles, national and international laws, regulations, and policies for data sharing must be considered. These concerns are part of what is collectively called data governance. Whereas neuroscience data transcend borders, data governance is typically constrained within geopolitical boundaries. An international data governance framework and accompanying infrastructure can assist investigators, institutions, data repositories, and funders with navigating disparate policies. Here, we propose principles and operational considerations for how data governance in neuroscience can be navigated at an international scale and highlight gaps, challenges, and opportunities in a global brain data ecosystem. We consider how to approach data governance in a way that balances data protection requirements and the need for open science, so as to promote international collaboration through federated constructs such as the International Brain Initiative (IBI).


Assuntos
Ecossistema , Neurociências , Segurança Computacional , Disseminação de Informação
8.
J Neurosci ; 30(8): 2844-55, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181582

RESUMO

Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium-impermeable (CI)-AMPA receptors (AMPARs). Here, we demonstrate that HFS-induced LTP at these MF-interneuron synapses requires postsynaptic activation of protein kinase A (PKA) and protein kinase C (PKC). Brief extracellular stimulation of PKA with forskolin (FSK) alone or in combination with 1-Methyl-3-isobutylxanthine (IBMX) induced a long-lasting synaptic enhancement at MF synapses predominantly containing CI-AMPARs. However, the FSK/IBMX-induced potentiation in cells loaded with the specific PKA inhibitor peptide PKI(6-22) failed to be maintained. Consistent with these data, delivery of HFS to MFs synapsing onto L-M interneurons loaded with PKI(6-22) induced posttetanic potentiation (PTP) but not LTP. Hippocampal sections stained for the catalytic subunit of PKA revealed abundant immunoreactivity in interneurons located in strata radiatum and L-M of area CA3. We also found that extracellular activation of PKC with phorbol 12,13-diacetate induced a pharmacological potentiation of the isolated CI-AMPAR component of the MF EPSP. However, HFS delivered to MF synapses on cells loaded with the PKC inhibitor chelerythrine exhibited PTP followed by a significant depression. Together, our data indicate that MF LTP in L-M interneurons at synapses containing primarily CI-AMPARs requires some of the same signaling cascades as does LTP of glutamatergic input to CA3 or CA1 pyramidal cells.


Assuntos
Região CA3 Hipocampal/enzimologia , Interneurônios/enzimologia , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/enzimologia , Proteínas Quinases/metabolismo , Transmissão Sináptica/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Benzofenantridinas/farmacologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/fisiologia , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/farmacologia , Ésteres de Forbol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Quinases/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Transmissão Sináptica/efeitos dos fármacos
9.
Pflugers Arch ; 462(6): 895-912, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21938402

RESUMO

The present study examines the biophysical properties and functional implications of I (h) in hippocampal area CA3 interneurons with somata in strata radiatum and lacunosum-moleculare. Characterization studies showed a small maximum h-conductance (2.6 ± 0.3 nS, n = 11), shallow voltage dependence with a hyperpolarized half-maximal activation (V (1/2) = -91 mV), and kinetics characterized by double-exponential functions. The functional consequences of I (h) were examined with regard to temporal summation and impedance measurements. For temporal summation experiments, 5-pulse mossy fiber input trains were activated. Blocking I (h) with 50 µM ZD7288 resulted in an increase in temporal summation, suggesting that I (h) supports sensitivity of response amplitude to relative input timing. Impedance was assessed by applying sinusoidal current commands. From impedance measurements, we found that I (h) did not confer theta-band resonance, but flattened the impedance-frequency relations instead. Double immunolabeling for hyperpolarization-activated cyclic nucleotide-gated proteins and glutamate decarboxylase 67 suggests that all four subunits are present in GABAergic interneurons from the strata considered for electrophysiological studies. Finally, a model of I (h) was employed in computational analyses to confirm and elaborate upon the contributions of I (h) to impedance and temporal summation.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Potássio/metabolismo , Animais , Simulação por Computador , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
10.
Hippocampus ; 21(12): 1290-301, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20824728

RESUMO

Immediate early genes (IEGs) typically are the first genetic responders to a variety of cellular activations. The IEG that encodes activity-regulated cytoskeleton-associated protein (arc/arg3.1) has attracted much interest because its mRNA is transported to and translated near activated synapses. Moreover, arc has been implicated in both long-term potentiation (LTP) and long-term depression (LTD). However, little is known about the time course of altered arc expression during LTP and LTD. Here we characterized arc mRNA levels in area CA1 of the adult rat hippocampus in vivo after LTP- and LTD-inducing stimulations that were identical, except for the temporal patterning of the stimulation pulses. We observed a persistent increase in arc mRNA level during LTP. In contrast, during LTD, arc mRNA level first was decreased and then transiently increased relative to control level. These findings demonstrate that arc mRNA is regulated differently during LTP and LTD, and they provide evidence for stimulation-induced downregulation of mRNA availability during LTD. Findings of abbreviated LTD when transcription was inhibited indicate that the prolonged maintenance of the type of N-methyl-D-aspartate receptor-dependent LTD studied here requires de novo transcription. Furthermore, lack of evidence for a LTD-associated change in the mRNA level of the IEG zif268 demonstrates that the decrease in arc mRNA during LTD is not a general genetic response. Thus, the regulation of arc expression not only differs between LTP and LTD, but also diverges from that of other IEGs implicated in activity-dependent synaptic plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/fisiologia , Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Proteínas do Citoesqueleto/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Sprague-Dawley
11.
Hippocampus ; 21(10): 1093-104, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20824729

RESUMO

Evidence shows that the serine/threonine protein phosphatase 1 (PP1) plays a critical role in synaptic plasticity and memory. Little is known about the contribution of the serine/threonine phosphatase 1 (PP2A) to synaptic plasticity. Both protein phosphatases can target the transcription factor cAMP response element binding protein (CREB), whose phosphorylation at Ser133, we previously found, was downregulated during long-term depression (LTD) of glutamatergic transmission in area CA1 of the adult hippocampus in vivo. Other work from our group showed that the activity of PP2A, as well as that of PP1, is increased after LTD induction in area CA1 in vivo. We therefore investigated here whether both protein phosphatases are necessary for LTD in area CA1, and whether they both are involved in the LTD-associated modification of CREB. We found that inhibition of either PP1 or PP2A interferes with the establishment of LTD. Furthermore, inhibition of either enzyme alone abrogated the LTD-associated dephosphorylation of CREB. Interestingly, inhibition of PP1 disrupted CREB dephosphosphorylation rapidly after LTD-inducing stimulation, whereas inhibition of PP2A did not blunt the CREB modification until a later time point. Thus, both PP1 and PP2A regulate CREB during LTD in area CA1, although possibly through different signaling pathways. Our results demonstrate that PP2A, similar to PP1, plays an essential role in the molecular events that underlie LTD at glutamatergic synapses in hippocampal area CA1 in vivo. We propose that one of the mechanisms through which these protein phosphatases may contribute to the prolonged maintenance of LTD is through the regulation of CREB.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Região CA1 Hipocampal/enzimologia , Estimulação Elétrica , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Masculino , Memória , Plasticidade Neuronal , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Polienos/administração & dosagem , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 2/antagonistas & inibidores , Pironas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
12.
PLoS One ; 15(12): e0242445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301490

RESUMO

Acyl-CoA dehydrogenase 10 (Acad10)-deficient mice develop impaired glucose tolerance, peripheral insulin resistance, and abnormal weight gain. In addition, they exhibit biochemical features of deficiencies of fatty acid oxidation, such as accumulation of metabolites consistent with abnormal mitochondrial energy metabolism and fasting induced rhabdomyolysis. ACAD10 has significant expression in mouse brain, unlike other acyl-CoA dehydrogenases (ACADs) involved in fatty acid oxidation. The presence of ACAD10 in human tissues was determined using immunohistochemical staining. To characterize the effect of ACAD10 deficiency on the brain, micro-MRI and neurobehavioral evaluations were performed. Acad10-deficient mouse behavior was examined using open field testing and DigiGait analysis for changes in general activity as well as indices of gait, respectively. ACAD10 protein was shown to colocalize to mitochondria and peroxisomes in lung, muscle, kidney, and pancreas human tissue. Acad10-deficient mice demonstrated subtle behavioral abnormalities, which included reduced activity and increased time in the arena perimeter in the open field test. Mutant animals exhibited brake and propulsion metrics similar to those of control animals, which indicates normal balance, stability of gait, and the absence of significant motor impairment. The lack of evidence for motor impairment combined with avoidance of the center of an open field arena and reduced vertical and horizontal exploration are consistent with a phenotype characterized by elevated anxiety. These results implicate ACAD10 function in normal mouse behavior, which suggests a novel role for ACAD10 in brain metabolism.


Assuntos
Acil-CoA Desidrogenase/genética , Ansiedade/genética , Encéfalo/enzimologia , Metabolismo Energético/genética , Mitocôndrias/enzimologia , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/metabolismo , Animais , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/diagnóstico por imagem , Carnitina/análogos & derivados , Carnitina/metabolismo , Marcha/fisiologia , Humanos , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Pâncreas/enzimologia , Peroxissomos/enzimologia
13.
J Neurosci ; 28(6): 1434-43, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18256264

RESUMO

The motivation to seek out rewards can come under the control of stimuli associated with reward delivery. The ability of cues to motivate reward-seeking behavior depends on the nucleus accumbens (NAcc). The molecular mechanisms in the NAcc that underlie the ability of a cue to motivate reward-seeking are not well understood. We examined whether extracellular signal-regulated kinase (ERK), an important intracellular signaling pathway in learning and memory, has a role in these motivational processes. We first examined p42 ERK (ERK2) activation in the NAcc after rats were trained to associate an auditory stimulus with food delivery and found that, as a consequence of training, presentation of the auditory cue itself was sufficient to increase ERK2 activation in the NAcc. To examine whether inhibition of ERK in the NAcc prevents cue-induced reward-seeking, we infused an inhibitor of ERK, U0126, into the NAcc before assessing rats' instrumental responding in the presence versus absence of the conditioned cue. We found that, whereas vehicle-infused rats showed increased instrumental responding during cue presentation, rats infused with U0126 showed a profound impairment in cue-induced instrumental responding. In contrast, intra-NAcc U0126 infusion had no effect on rats' food-reinforced instrumental responding or their ability to execute conditioned approach behavior. Our results demonstrate learning-related changes in ERK signaling in the NAcc, and that disruption of ERK activation in this structure interferes with the incentive-motivational effects of conditioned stimuli. The molecular mechanisms described here may have implications for cue-elicited drug craving after repeated exposure to drugs of abuse.


Assuntos
Sinais (Psicologia) , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Núcleo Accumbens/enzimologia , Recompensa , Animais , Condicionamento Psicológico/fisiologia , Ativação Enzimática/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
14.
Neurobiol Learn Mem ; 92(3): 451-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19248836

RESUMO

The transcription factor cAMP response element-binding protein (CREB) in the nucleus accumbens (NAc) has been shown to regulate an animal's behavioral responsiveness to emotionally salient stimuli, and an increase in CREB phosphorylation in the NAc has been observed during exposure to rewarding stimuli, such as drugs of abuse. Here we show that CREB phosphorylation increases in the NAc also during exposure to cues that an animal has associated with delivery of natural rewards. Adult male Sprague-Dawley rats (rattus norvegicus) were trained to associate an auditory stimulus with delivery of food pellets, and CREB phosphorylation was examined in the striatum following training. We found that repeated tone-food pairings resulted in an increase in CREB phosphorylation in the NAc but not in the adjacent dorsal striatum or in the NAc 3h after the final training session. We further found that the cue itself, as opposed to the food pellets, the training context, or tone-food pairings, was sufficient to increase CREB phosphorylation in the NAc. These results suggest that the processing of primary rewarding stimuli and of environmental cues that predict them triggers similar accumbal signaling mechanisms.


Assuntos
Percepção Auditiva/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Núcleo Accumbens/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Corpo Estriado/fisiologia , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Imuno-Histoquímica , Masculino , Fosforilação , Fotomicrografia , Ratos , Ratos Sprague-Dawley , Recompensa , Fatores de Tempo
15.
Antioxid Redox Signal ; 9(2): 201-10, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17115934

RESUMO

Superoxide dismutases (SODs) are the major antioxidant enzymes that inactivate superoxide and thereby control oxidative stress as well as redox signaling. Transgenic mice overexpressing different isozymes of SOD have been used to study the effect of SOD overexpression on hippocampal synaptic plasticity and hippocampus-dependent learning and memory. Studies with transgenic and wild-type animals of different ages show that the function of SOD overexpression changes across the life span of an animal, and comparisons between animals that overexpress different SOD isozymes suggest that the functional value of overexpression as well as the mechanisms through which the respective functional values are effected vary depending on isozyme. The work discussed in this review has important implications for the use of antioxidant treatments and for our understanding of the role of superoxide in physiological and pathological processes.


Assuntos
Envelhecimento , Hipocampo/enzimologia , Superóxido Dismutase/metabolismo , Sinapses/metabolismo , Animais , Antioxidantes/metabolismo , Hipocampo/metabolismo , Aprendizagem , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Oxirredução , Isoformas de Proteínas , Superóxido Dismutase/química , Superóxidos/química
16.
Neuron ; 90(5): 917-26, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27253446

RESUMO

The field of neuroscience is enjoying a rapid expansion in scope, coupled with a remarkable broadening of conceptual approaches, scientific tools, and clinical applications. This growth poses new challenges for academic training programs as they prepare young neuroscientists for a more complex, competitive, and diverse career landscape. Multiple stakeholders, including academia, federal funding agencies, industry, scientific societies, private foundations, and other public and private sector contributors, need to be actively engaged in supporting this broad training effort. A renewed commitment to a more forward-looking, flexible yet integrative training vision offers opportunities for a bright future for young neuroscientists as they assume the role of vanguard of the enterprise that enriches our understanding of the brain.


Assuntos
Neurociências/educação , Neurociências/tendências , Escolha da Profissão , Humanos , Setor Privado , Setor Público
17.
J Neurosci ; 23(12): 4842-9, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12832506

RESUMO

The neural substrates of memory likely include long-term potentiation (LTP) of synaptic strength that results from high-frequency stimulation (HFS) of the afferent pathway. The mechanisms that underlie the maintenance of LTP include RNA and protein synthesis, although the contribution of these molecular events typically does not become essential until several hours after LTP induction. We here show that, different from this pattern, (1) LTP maintenance at the mossy fiber (MF) input to CA3 pyramidal cells in the hippocampus depends on protein and RNA synthesis soon after LTP induction, and (2) some of these molecular events are controlled by signaling from the presynaptic granule cell soma. Bath application of the protein synthesis inhibitor emetine or cycloheximide 1 hr after MF LTP induction in hippocampal slices caused loss of MF potentiation. In contrast, application of emetine 1 hr after LTP induction at the commissural-associational input to CA3 pyramidal cells had no effect on this form of LTP. Administration of emetine or the RNA synthesis inhibitor actinomycin-D before delivery of HFS to MF input also caused a rapid decay of MF potentiation, although neither drug had an effect on the amplitude or the time-constant of decay of post-tetanic potentiation (PTP). Similarly, transection of MF axons near granule cell somas had no effect on baseline or PTP parameters but caused loss of potentiation at a rate comparable with that after actinomycin-D application. These results indicate that the mechanisms that underlie MF LTP maintenance differ from those involved in LTP maintenance at other glutamatergic synapses.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Neurônios/fisiologia , Biossíntese de Proteínas , RNA/biossíntese , Animais , Colforsina/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Terminações Pré-Sinápticas/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
18.
J Neurosci ; 22(6): 2054-62, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11896145

RESUMO

Protein kinase cascades likely play a critical role in the signaling events that underlie synaptic plasticity and memory. The extracellular signal-regulated kinase (ERK) cascade is suited well for such a role because its targets include regulators of gene expression. Here we report that the ERK cascade is recruited during long-term depression (LTD) of synaptic strength in area CA1 of the adult hippocampus in vivo and selectively impacts on phosphorylation of the nuclear transcription factor Elk-1. Using a combination of in vivo electrophysiology, biochemistry, pharmacology, and immunohistochemistry, we found the following: (1) ERK phosphorylation, including phosphorylation of nuclear ERK, and ERK phosphotransferase activity are increased markedly, albeit transiently, after the induction of NMDA receptor-dependent LTD at the commissural input to area CA1 pyramidal cells in the hippocampus of anesthetized adult rats; (2) LTD-inducing paired-pulse stimulation fails to produce lasting LTD in the presence of the ERK kinase inhibitor SL327, which suggests that ERK activation is necessary for the persistence of LTD; and (3) ERK activation during LTD results in increased phosphorylation of Elk-1 but not of the transcription factor cAMP response element-binding protein. Our findings indicate that the ERK cascade transduces signals from the synapse to the nucleus during LTD in hippocampal area CA1 in vivo, as it does during long-term potentiation in area CA1, but that the pattern of coupling of the ERK cascade to transcriptional regulators differs between the two forms of synaptic plasticity.


Assuntos
Proteínas de Ligação a DNA , Hipocampo/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibição Neural/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Estimulação Elétrica , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibição Neural/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Tempo , Proteínas Elk-1 do Domínio ets
19.
Neurorehabil Neural Repair ; 29(5): 483-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25239938

RESUMO

BACKGROUND: Following traumatic brain injury (TBI), clinical cognitive training paradigms harness implicit and explicit learning and memory systems to improve function; however, these systems are differentially affected by TBI, highlighting the need for an experimental TBI model that can test efficacy of cognitive training approaches. OBJECTIVES: To develop a clinically relevant experimental cognitive training model using the Morris water maze (MWM) wherein training on implicitly learned task components was provided to improve behavioral performance post-TBI. METHODS: Eighty-one adult male rats were divided by injury status (controlled cortical impact [CCI]/Sham), non-spatial cognitive training (CogTrained/No-CogTrained), and extra-maze cues (Cued/Non-Cued) during MWM testing. Platform latencies, thigmotaxis, and search strategies were assessed during MWM trials. RESULTS: Cognitive training was associated with improved platform latencies, reduced thigmotaxis, and more effective search strategy use for Sham and CCI rats. In the Cued and Non-Cued MWM paradigm, there were no differences between CCI/CogTrained and Sham/No-CogTrained groups. During novel testing conditions, CogTrained groups applied implicitly learned knowledge/skills; however, sham-cued CogTrained/rats better incorporated extramaze cues into their search strategy than the CCI-Cued group. Cognitive training had no effects on contusion size or hippocampal cell survival. CONCLUSIONS: The results provide evidence that CCI-CogTrained rats that learned the nonspatial components of the MWM task applied these skills during multiple conditions of the place-learning task, thereby mitigating cognitive deficits typically associated with this injury model. The results show that a systematic application of clinically relevant constructs associated with cognitive training paradigms can be used with experimental TBI to affect place learning.


Assuntos
Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/reabilitação , Terapia Cognitivo-Comportamental/métodos , Animais , Condicionamento Psicológico , Sinais (Psicologia) , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Testes Neuropsicológicos , Postura , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Natação/psicologia
20.
Neurorehabil Neural Repair ; 29(9): 897-906, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25665829

RESUMO

Previous work demonstrates that spatial (explicit) and nonspatial (implicit) elements of place learning in the Morris water maze (MWM) task can be dissociated and examined in the context of experimental traumatic brain injury (TBI). Providing nonspatial cognitive training (CT) after injury can improve place learning compared with untrained controls. In the present study, we hypothesized that brief exposure to extra-maze cues, in conjunction with CT, may further improve MWM performance and extra-maze cue utilization compared with CT alone. Adult male Sprague-Dawley rats (n = 66) received controlled cortical impact (CCI) injury or sham surgery. Beginning day 8 postsurgery, CCI and sham rats received 6 days of no training (NT) or CT with/without brief, noncontextualized exposure to extra-maze cues (BE and CT, respectively). Acquisition (days 14-18), visible platform (VP; day 19), carryover (CO; days 20-26), and periodic probe trials were performed. Platform latencies, peripheral and target zone time allocation, and search strategies were assessed. CCI/BE rats had shorter acquisition trial latencies than CCI/NT (P < .001) and tended to have shorter latencies than CCI/CT rats (P < .10). Both BE and CT reduced peripheral zone swimming for CCI rats versus CCI/NT. CCI/BE animals increased spatial swim strategies from day 14 to day 18 relative to CCI/CT and showed similar swim strategy selection to the Sham/NT group. These data suggest that visual priming improves initial place learning in the MWM. These results support the visual priming response as another clinically relevant experimental rehabilitation construct, to use when assessing injury and treatment effects of behavioral and pharmacological therapies on cognition after TBI.


Assuntos
Lesões Encefálicas/reabilitação , Priming de Repetição , Aprendizagem Espacial , Animais , Comportamento Animal , Lesões Encefálicas/psicologia , Córtex Cerebral/lesões , Sinais (Psicologia) , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA