Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168079

RESUMO

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.


Assuntos
Proteínas F-Box/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Engenharia Genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Amilases/metabolismo , Carbono/farmacologia , Repressão Catabólica , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Nitrogênio/metabolismo , Fenótipo , Sequenciamento Completo do Genoma , Xilose/metabolismo , beta-Frutofuranosidase/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111691

RESUMO

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Biocombustíveis , Biomassa , Repressão Catabólica , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
3.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731077

RESUMO

Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7-8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae, for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.


Assuntos
Biocombustíveis , Clostridiales/classificação , Filogenia , Silagem/microbiologia , Zea mays , Técnicas de Tipagem Bacteriana , Composição de Bases , Biocombustíveis/microbiologia , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Zea mays/microbiologia
4.
J Cell Sci ; 131(9)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29592970

RESUMO

Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.


Assuntos
Comunicação Celular/fisiologia , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurospora crassa/citologia , Neurospora crassa/enzimologia , Fusão Celular , Transdução de Sinais
5.
Appl Microbiol Biotechnol ; 104(20): 8679-8689, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32915256

RESUMO

Butanol is a platform chemical that is utilized in a wide range of industrial products and is considered a suitable replacement or additive to liquid fuels. So far, it is mainly produced through petrochemical routes. Alternative production routes, for example through biorefinery, are under investigation but are currently not at a market competitive level. Possible alternatives, such as acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia are not market-ready to this day either, because of their low butanol titer and the high costs of feedstocks. Here, we analyzed wheat middlings and wheat red dog, two wheat milling byproducts available in large quantities, as substrates for clostridial ABE fermentation. We could identify ten strains that exhibited good butanol yields on wheat red dog. Two of the best ABE producing strains, Clostridium beijerinckii NCIMB 8052 and Clostridium diolis DSM 15410, were used to optimize a laboratory-scale fermentation process. In addition, enzymatic pretreatment of both milling byproducts significantly enhanced ABE production rates of the strains C. beijerinckii NCIMB 8052 and C. diolis DSM 15410. Finally, a profitability analysis was performed for small- to mid-scale ABE fermentation plants that utilize enzymatically pretreated wheat red dog as substrate. The estimations show that such a plant could be commercially successful.Key points• Wheat milling byproducts are suitable substrates for clostridial ABE fermentation.• Enzymatic pretreatment of wheat red dog and middlings increases ABE yield.• ABE fermentation plants using wheat red dog as substrate are economically viable. Graphical abstract.


Assuntos
Acetona , Butanóis , Clostridium , Etanol , Fermentação
6.
BMC Bioinformatics ; 15: 38, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495746

RESUMO

BACKGROUND: New technologies for analyzing biological samples, like next generation sequencing, are producing a growing amount of data together with quality scores. Moreover, software tools (e.g., for mapping sequence reads), calculating transcription factor binding probabilities, estimating epigenetic modification enriched regions or determining single nucleotide polymorphism increase this amount of position-specific DNA-related data even further. Hence, requesting data becomes challenging and expensive and is often implemented using specialised hardware. In addition, picking specific data as fast as possible becomes increasingly important in many fields of science. The general problem of handling big data sets was addressed by developing specialized databases like HBase, HyperTable or Cassandra. However, these database solutions require also specialized or distributed hardware leading to expensive investments. To the best of our knowledge, there is no database capable of (i) storing billions of position-specific DNA-related records, (ii) performing fast and resource saving requests, and (iii) running on a single standard computer hardware. RESULTS: Here, we present DRUMS (Disk Repository with Update Management and Select option), satisfying demands (i)-(iii). It tackles the weaknesses of traditional databases while handling position-specific DNA-related data in an efficient manner. DRUMS is capable of storing up to billions of records. Moreover, it focuses on optimizing relating single lookups as range request, which are needed permanently for computations in bioinformatics. To validate the power of DRUMS, we compare it to the widely used MySQL database. The test setting considers two biological data sets. We use standard desktop hardware as test environment. CONCLUSIONS: DRUMS outperforms MySQL in writing and reading records by a factor of two up to a factor of 10000. Furthermore, it can work with significantly larger data sets. Our work focuses on mid-sized data sets up to several billion records without requiring cluster technology. Storing position-specific data is a general problem and the concept we present here is a generalized approach. Hence, it can be easily applied to other fields of bioinformatics.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Retrovirus Endógenos/genética , Genoma Humano/genética , Humanos , Armazenamento e Recuperação da Informação , Polimorfismo de Nucleotídeo Único
7.
J Diabetes Sci Technol ; : 19322968241266821, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080863

RESUMO

BACKGROUND: We present a digital therapeutic (DTx) using continuous glucose monitoring (CGM) and an advanced artificial intelligence (AI) algorithm to digitally personalize lifestyle interventions for people with type 2 diabetes (T2D). METHOD: A study of 118 participants with non-insulin-treated T2D (HbA1c ≥ 6.5%) who were already receiving standard care and had a mean baseline (BL) HbA1c of 7.46% (0.93) used the DTx for three months to evaluate clinical endpoints, such as HbA1c, body weight, quality of life and app usage, for a pre-post comparison. The study also included an assessment of initial long-term data from a second use of the DTx. RESULTS: After three months of using the DTx, there was an improvement of 0.67% HbA1c in the complete cohort and -1.08% HbA1c in patients with poorly controlled diabetes (BL-HbA1c ≥ 7.0%) compared with standard of care (P < .001). The number of patients within the therapeutic target range (< 7.0%) increased from 38% to 60%, and 33% were on the way to remission (< 6.5%). Patients who used the DTx a second time experienced a reduction of -0.76% in their HbA1c levels and a mean weight loss of -6.84 kg after six months (P < .001) compared with BL. CONCLUSIONS: These results indicate that the DTx has clinically relevant effects on glycemic control and weight reduction for patients with both well and poorly controlled diabetes, whether through single or repeated usage. It is a noteworthy improvement in T2D management, offering a non-pharmacological, fully digital solution that integrates biofeedback through CGM and an advanced AI algorithm.

8.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927028

RESUMO

Clostridium beijerinckii strain mbf-VZ-132 was isolated from soil in Freising-Weihenstephan (Bavaria, Germany). The 16S rRNA gene sequence showed a 99.9% sequence identity to that of Clostridium diolis DSM 15410, which was recently reclassified as C. beijerinckii In this study, we present the draft genome sequence of C. beijerinckii mbf-VZ-132 based on PacBio sequencing.

9.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795340

RESUMO

Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing.

10.
mSystems ; 4(6)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848309

RESUMO

Biorefining of renewable feedstocks is one of the most promising routes to replace fossil-based products. Since many common fermentation hosts, such as Saccharomyces cerevisiae, are naturally unable to convert many component plant cell wall polysaccharides, the identification of organisms with broad catabolism capabilities represents an opportunity to expand the range of substrates used in fermentation biorefinery approaches. The red basidiomycete yeast Rhodosporidium toruloides is a promising and robust host for lipid- and terpene-derived chemicals. Previous studies demonstrated assimilation of a range of substrates, from C5/C6 sugars to aromatic molecules similar to lignin monomers. In the current study, we analyzed the potential of R. toruloides to assimilate d-galacturonic acid, a major sugar in many pectin-rich agricultural waste streams, including sugar beet pulp and citrus peels. d-Galacturonic acid is not a preferred substrate for many fungi, but its metabolism was found to be on par with those of d-glucose and d-xylose in R. toruloides A genomewide analysis by combined transcriptome sequencing (RNA-seq) and RB-TDNA-seq revealed those genes with high relevance for fitness on d-galacturonic acid. While R. toruloides was found to utilize the nonphosphorylative catabolic pathway known from ascomycetes, the maximal velocities of several enzymes exceeded those previously reported. In addition, an efficient downstream glycerol catabolism and a novel transcription factor were found to be important for d-galacturonic acid utilization. These results set the basis for use of R. toruloides as a potential host for pectin-rich waste conversions and demonstrate its suitability as a model for metabolic studies with basidiomycetes.IMPORTANCE The switch from the traditional fossil-based industry to a green and sustainable bioeconomy demands the complete utilization of renewable feedstocks. Many currently used bioconversion hosts are unable to utilize major components of plant biomass, warranting the identification of microorganisms with broader catabolic capacity and characterization of their unique biochemical pathways. d-Galacturonic acid is a plant component of bioconversion interest and is the major backbone sugar of pectin, a plant cell wall polysaccharide abundant in soft and young plant tissues. The red basidiomycete and oleaginous yeast Rhodosporidium toruloides has been previously shown to utilize a range of sugars and aromatic molecules. Using state-of-the-art functional genomic methods and physiological and biochemical assays, we elucidated the molecular basis underlying the efficient metabolism of d-galacturonic acid. This study identified an efficient pathway for uronic acid conversion to guide future engineering efforts and represents the first detailed metabolic analysis of pectin metabolism in a basidiomycete fungus.

11.
Front Microbiol ; 10: 2317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736884

RESUMO

Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 min) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.

12.
Artigo em Inglês | MEDLINE | ID: mdl-29119000

RESUMO

BACKGROUND: The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. RESULTS: Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. CONCLUSIONS: Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process.

13.
Biotechnol Biofuels ; 10: 149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616073

RESUMO

BACKGROUND: Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS: The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS: PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.

14.
PLoS One ; 10(10): e0140398, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505484

RESUMO

The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.


Assuntos
Anotação de Sequência Molecular , Peptídeo Sintases/genética , Filogenia , Scopulariopsis/genética , Depsipeptídeos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Estrutura Terciária de Proteína/genética , Scopulariopsis/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-24688467

RESUMO

The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF), are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS) resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron's maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA