Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2315419121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285952

RESUMO

Persistent antigen exposure results in the differentiation of functionally impaired, also termed exhausted, T cells which are maintained by a distinct population of precursors of exhausted T (TPEX) cells. T cell exhaustion is well studied in the context of chronic viral infections and cancer, but it is unclear whether and how antigen-driven T cell exhaustion controls progression of autoimmune diabetes and whether this process can be harnessed to prevent diabetes. Using nonobese diabetic (NOD) mice, we show that some CD8+ T cells specific for the islet antigen, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) displayed terminal exhaustion characteristics within pancreatic islets but were maintained in the TPEX cell state in peripheral lymphoid organs (PLO). More IGRP-specific T cells resided in the PLO than in islets. To examine the impact of extraislet antigen exposure on T cell exhaustion in diabetes, we generated transgenic NOD mice with inducible IGRP expression in peripheral antigen-presenting cells. Antigen exposure in the extraislet environment induced severely exhausted IGRP-specific T cells with reduced ability to produce interferon (IFN)γ, which protected these mice from diabetes. Our data demonstrate that T cell exhaustion induced by delivery of antigen can be harnessed to prevent autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Proteínas/metabolismo , Exaustão das Células T , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/metabolismo , Linfócitos T CD8-Positivos
2.
N Engl J Med ; 389(23): 2140-2150, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38055252

RESUMO

BACKGROUND: Janus kinase (JAK) inhibitors, including baricitinib, block cytokine signaling and are effective disease-modifying treatments for several autoimmune diseases. Whether baricitinib preserves ß-cell function in type 1 diabetes is unclear. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with type 1 diabetes diagnosed during the previous 100 days to receive baricitinib (4 mg once per day) or matched placebo orally for 48 weeks. The primary outcome was the mean C-peptide level, determined from the area under the concentration-time curve, during a 2-hour mixed-meal tolerance test at week 48. Secondary outcomes included the change from baseline in the glycated hemoglobin level, the daily insulin dose, and measures of glycemic control assessed with the use of continuous glucose monitoring. RESULTS: A total of 91 patients received baricitinib (60 patients) or placebo (31 patients). The median of the mixed-meal-stimulated mean C-peptide level at week 48 was 0.65 nmol per liter per minute (interquartile range, 0.31 to 0.82) in the baricitinib group and 0.43 nmol per liter per minute (interquartile range, 0.13 to 0.63) in the placebo group (P = 0.001). The mean daily insulin dose at 48 weeks was 0.41 U per kilogram of body weight per day (95% confidence interval [CI], 0.35 to 0.48) in the baricitinib group and 0.52 U per kilogram per day (95% CI, 0.44 to 0.60) in the placebo group. The levels of glycated hemoglobin were similar in the two trial groups. However, the mean coefficient of variation of the glucose level at 48 weeks, as measured by continuous glucose monitoring, was 29.6% (95% CI, 27.8 to 31.3) in the baricitinib group and 33.8% (95% CI, 31.5 to 36.2) in the placebo group. The frequency and severity of adverse events were similar in the two trial groups, and no serious adverse events were attributed to baricitinib or placebo. CONCLUSIONS: In patients with type 1 diabetes of recent onset, daily treatment with baricitinib over 48 weeks appeared to preserve ß-cell function as estimated by the mixed-meal-stimulated mean C-peptide level. (Funded by JDRF International and others; BANDIT Australian New Zealand Clinical Trials Registry number, ACTRN12620000239965.).


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Inibidores de Janus Quinases , Humanos , Austrália , Glicemia/análise , Automonitorização da Glicemia , Peptídeo C/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Insulina/uso terapêutico , Inibidores de Janus Quinases/efeitos adversos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Método Duplo-Cego
3.
J Immunol ; 212(11): 1658-1669, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587315

RESUMO

Chronic destruction of insulin-producing pancreatic ß cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated ß cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the ß cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated ß cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.


Assuntos
Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Camundongos Endogâmicos NOD , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Secretoras de Insulina/imunologia , Diabetes Mellitus Tipo 1/imunologia , Granzimas/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Apresentação de Antígeno/imunologia , Feminino
4.
Diabetologia ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814445

RESUMO

AIMS/HYPOTHESIS: Almost all beta cells contact one capillary and insulin granule fusion is targeted to this region. However, there are reports of beta cells contacting more than one capillary. We therefore set out to determine the proportion of beta cells with multiple contacts and the impact of this on cell structure and function. METHODS: We used pancreatic slices in mice and humans to better maintain cell and islet structure than in isolated islets. Cell structure was assayed using immunofluorescence and 3D confocal microscopy. Live-cell two-photon microscopy was used to map granule fusion events in response to glucose stimulation. RESULTS: We found that 36% and 22% of beta cells in islets from mice and humans, respectively, have separate contact with two capillaries. These contacts establish a distinct form of cell polarity with multiple basal regions. Both capillary contact points are enriched in presynaptic scaffold proteins, and both are a target for insulin granule fusion. Cells with two capillary contact points have a greater capillary contact area and secrete more, with analysis showing that, independent of the number of contact points, increased contact area is correlated with increased granule fusion. Using db/db mice as a model for type 2 diabetes, we observed changes in islet capillary organisation that significantly reduced total islet capillary surface area, and reduced area of capillary contact in single beta cells. CONCLUSIONS/INTERPRETATION: Beta cells that contact two capillaries are a significant subpopulation of beta cells within the islet. They have a distinct form of cell polarity and both contact points are specialised for secretion. The larger capillary contact area of cells with two contact points is correlated with increased secretion. In the db/db mouse, changes in capillary structure impact beta cell capillary contact, implying that this is a new factor contributing to disease progression.

5.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37735502

RESUMO

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Proteínas tau/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Glucose/metabolismo , Doença de Alzheimer/metabolismo
6.
J Autoimmun ; 140: 103090, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572540

RESUMO

CXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node. In amounts typical to low-grade endotoxemia, bacterial lipopolysaccharide induced CXCL10 production in isolated islets of wild type and RAG1 or IFNG-receptor-deficient but not type-I-IFN-receptor-deficient NOD mice, dissociating lipopolysaccharide-induced CXCL10 production from T-cells and IFNγ. Although mostly myeloid-cell dependent, also ß-cells showed activation of innate immune signaling pathways and Cxcl10 expression in response to lipopolysaccharide indicating their independent sensitivity to dysbiosis. Thus, CXCL10 induction in response to low levels of lipopolysaccharide may allow islet-specific T-cells imprinted in pancreatic lymph node to enter in healthy islets independently of IFN-g, and thus link gut dysbiosis to early islet-autoimmunity via dysbiosis-associated low-grade endotoxemia.

7.
EMBO Rep ; 21(3): e48692, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072744

RESUMO

Dysregulation of lipid homeostasis is intimately associated with defects in insulin secretion, a key feature of type 2 diabetes. Here, we explore the role of the putative lipid transporter ABCA12 in regulating insulin secretion from ß-cells. Mice with ß-cell-specific deletion of Abca12 display impaired glucose-stimulated insulin secretion and eventual islet inflammation and ß-cell death. ABCA12's action in the pancreas is independent of changes in the abundance of two other cholesterol transporters, ABCA1 and ABCG1, or of changes in cellular cholesterol or ceramide content. Instead, loss of ABCA12 results in defects in the genesis and fusion of insulin secretory granules and increases in the abundance of lipid rafts at the cell membrane. These changes are associated with dysregulation of the small GTPase CDC42 and with decreased actin polymerisation. Our findings establish a new, pleiotropic role for ABCA12 in regulating pancreatic lipid homeostasis and insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos
8.
Diabetologia ; 64(3): 618-629, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399909

RESUMO

AIMS/HYPOTHESIS: We hypothesised that human beta cells are structurally and functional polarised with respect to the islet capillaries. We set out to test this using confocal microscopy to map the 3D spatial arrangement of key proteins and live-cell imaging to determine the distribution of insulin granule fusion around the cells. METHODS: Human pancreas samples were rapidly fixed and processed using the pancreatic slice technique, which maintains islet structure and architecture. Slices were stained using immunofluorescence for polarity markers (scribble, discs large [Dlg] and partitioning defective 3 homologue [Par3]) and presynaptic markers (liprin, Rab3-interacting protein [RIM2] and piccolo) and imaged using 3D confocal microscopy. Isolated human islets were dispersed and cultured on laminin-511-coated coverslips. Live 3D two-photon microscopy was used on cultured cells to image exocytic granule fusion events upon glucose stimulation. RESULTS: Assessment of the distribution of endocrine cells across human islets found that, despite distinct islet-to-islet complexity and variability, including multi-lobular islets, and intermixing of alpha and beta cells, there is still a striking enrichment of alpha cells at the islet mantle. Measures of cell position demonstrate that most beta cells contact islet capillaries. Subcellularly, beta cells consistently position polar determinants, such as Par3, Dlg and scribble, with a basal domain towards the capillaries and apical domain at the opposite face. The capillary interface/vascular face is enriched in presynaptic scaffold proteins, such as liprin, RIM2 and piccolo. Interestingly, enrichment of presynaptic scaffold proteins also occurs where the beta cells contact peri-islet capillaries, suggesting functional interactions. We also observed the same polarisation of synaptic scaffold proteins in islets from type 2 diabetic patients. Consistent with polarised function, isolated beta cells cultured onto laminin-coated coverslips target insulin granule fusion to the coverslip. CONCLUSIONS/INTERPRETATION: Structural and functional polarisation is a defining feature of human pancreatic beta cells and plays an important role in the control of insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/patologia , Doadores de Tecidos , Biomarcadores/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Fenótipo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Técnicas de Cultura de Tecidos
9.
Diabetologia ; 64(4): 878-889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483762

RESUMO

AIMS/HYPOTHESIS: Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice. METHODS: CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214-specific CD8+ T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined. RESULTS: STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP206-214-specific CD8+ T cells (2878 ± 642 cells in NOD.STING-/- mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING-/- mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING-/- mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes). CONCLUSIONS/INTERPRETATION: Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Transferência Adotiva , Animais , Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Ilhotas Pancreáticas/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais
10.
J Biol Chem ; 295(27): 8901-8911, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32341128

RESUMO

Within the pancreatic ß-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in ß-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from ß-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the ß-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in ß-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 ß-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the ß-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.


Assuntos
Secreção de Insulina/fisiologia , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Exocitose/fisiologia , Corantes Fluorescentes/química , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Fatores de Tempo
11.
Immunol Cell Biol ; 99(5): 486-495, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548057

RESUMO

Although immune interventions have shown great promise in type 1 diabetes mellitus (T1D) clinical trials, none are yet in routine clinical use or able to achieve insulin independence in patients. In addition to this, the principles of T1D treatment remain essentially unchanged since the isolation of insulin, almost a century ago. T1D is characterized by insulin deficiency as a result of destruction of insulin-producing beta cells mediated by autoreactive T cells. Therapies that target beta-cell antigen-specific T cells are needed to prevent T1D. CD8+ T-cell exhaustion is an emerging area of research in chronic infection, cancer immunotherapy, and more recently, autoimmunity. Recent data suggest that exhausted T-cell populations are associated with improved markers of T1D. T-cell exhaustion is both characterized and mediated by inhibitory receptors. This review aims to identify which inhibitory receptors may prove useful to induce T-cell exhaustion to treat T1D and identify limitations and gaps in the current literature.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Autoimunidade , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina
12.
Diabet Med ; 38(11): e14608, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043837

RESUMO

AIMS: Aim of this study is to report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, responsible for coronavirus disease 2019 (COVID-19), as a possible cause for type 1 diabetes by providing an illustrative clinical case of a man aged 45 years presenting with antibody-negative diabetic ketoacidosis post-recovery from COVID-19 pneumonia and to explore the potential for SARS-CoV-2 to adhere to human islet cells. METHODS: Explanted human islet cells from three independent solid organ donors were incubated with the SARS-CoV-2 spike protein receptor biding domain (RBD) fused to a green fluorescent protein (GFP) or a control-GFP, with differential adherence established by flow cytometry. RESULTS: Flow cytometry revealed dose-dependent specific binding of RBD-GFP to islet cells when compared to control-GFP. CONCLUSIONS: Although a causal basis remains to be established, our case and in vitro data highlight a potential mechanism by which SARS-CoV-2 infection may result in antibody-negative type 1 diabetes.


Assuntos
COVID-19/terapia , Diabetes Mellitus Tipo 1/diagnóstico , Cetoacidose Diabética/diagnóstico , Ilhotas Pancreáticas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/etiologia , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/terapia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
13.
Proc Natl Acad Sci U S A ; 115(42): 10732-10737, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275329

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells, found within the islets of Langerhans in the pancreas, are destroyed by islet-infiltrating T cells. Identifying the antigenic targets of beta-cell reactive T cells is critical to gain insight into the pathogenesis of T1D and develop antigen-specific immunotherapies. Several lines of evidence indicate that insulin is an important target of T cells in T1D. Because many human islet-infiltrating CD4+ T cells recognize C-peptide-derived epitopes, we hypothesized that full-length C-peptide (PI33-63), the peptide excised from proinsulin as it is converted to insulin, is a target of CD4+ T cells in people with T1D. CD4+ T cell responses to full-length C-peptide were detected in the blood of: 14 of 23 (>60%) people with recent-onset T1D, 2 of 15 (>13%) people with long-standing T1D, and 1 of 13 (<8%) HLA-matched people without T1D. C-peptide-specific CD4+ T cell clones, isolated from six people with T1D, recognized epitopes from the entire 31 amino acids of C-peptide. Eighty-six percent (19 of 22) of the C-peptide-specific clones were restricted by HLA-DQ8, HLA-DQ2, HLA-DQ8trans, or HLA-DQ2trans, HLA alleles strongly associated with risk of T1D. We also found that full-length C-peptide was a much more potent agonist of some CD4+ T cell clones than an 18mer peptide encompassing the cognate epitope. Collectively, our findings indicate that proinsulin C-peptide is a key target of autoreactive CD4+ T cells in T1D. Hence, full-length C-peptide is a promising candidate for antigen-specific immunotherapy in T1D.


Assuntos
Autoantígenos/imunologia , Peptídeo C/imunologia , Peptídeo C/metabolismo , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Antígenos HLA/imunologia , Ilhotas Pancreáticas/imunologia , Proinsulina/imunologia , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Pessoa de Meia-Idade , Adulto Jovem
14.
Diabetologia ; 63(7): 1333-1348, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32356104

RESUMO

AIMS/HYPOTHESIS: Reduced insulin secretion results in hyperglycaemia and diabetes involving a complex aetiology that is yet to be fully elucidated. Genetic susceptibility is a key factor in beta cell dysfunction and hyperglycaemia but the responsible genes have not been defined. The Collaborative Cross (CC) is a recombinant inbred mouse panel with diverse genetic backgrounds allowing the identification of complex trait genes that are relevant to human diseases. The aim of this study was to identify and characterise genes associated with hyperglycaemia. METHODS: Using an unbiased genome-wide association study, we examined random blood glucose and insulin sensitivity in 53 genetically unique mouse strains from the CC population. The influences of hyperglycaemia susceptibility quantitative trait loci (QTLs) were investigated by examining glucose tolerance, insulin secretion, pancreatic histology and gene expression in the susceptible mice. Expression of candidate genes and their association with insulin secretion were examined in human islets. Mechanisms underlying reduced insulin secretion were studied in MIN6 cells using RNA interference. RESULTS: Wide variations in blood glucose levels and the related metabolic traits (insulin sensitivity and body weight) were observed in the CC population. We showed that elevated blood glucose in the CC strains was not due to insulin resistance nor obesity but resulted from reduced insulin secretion. This insulin secretory defect was demonstrated to be independent of abnormalities in islet morphology, beta cell mass and pancreatic insulin content. Gene mapping identified the E2f8 (p = 2.19 × 10-15) and Dlg2 loci (p = 3.83 × 10-8) on chromosome 7 to be significantly associated with hyperglycaemia susceptibility. Fine mapping the implicated regions using congenic mice demonstrated that these two loci have independent effects on insulin secretion in vivo. Significantly, our results revealed that increased E2F8 and DLG2 gene expression are correlated with enhanced insulin secretory function in human islets. Furthermore, loss-of-function studies in MIN6 cells demonstrated that E2f8 is involved in insulin secretion through an ATP-sensitive K+ channel-dependent pathway, which leads to a 30% reduction in Abcc8 expression. Similarly, knockdown of Dlg2 gene expression resulted in impaired insulin secretion in response to glucose and non-glucose stimuli. CONCLUSIONS/INTERPRETATION: Collectively, these findings suggest that E2F transcription factor 8 (E2F8) and discs large homologue 2 (DLG2) regulate insulin secretion. The CC resource enables the identification of E2f8 and Dlg2 as novel genes associated with hyperglycaemia due to reduced insulin secretion in pancreatic beta cells. Taken together, our results provide better understanding of the molecular control of insulin secretion and further support the use of the CC resource to identify novel genes relevant to human diseases.


Assuntos
Guanilato Quinases/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular , Feminino , Estudo de Associação Genômica Ampla , Guanilato Quinases/genética , Hiperglicemia/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas Repressoras/genética
15.
Diabetologia ; 62(12): 2273-2286, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624901

RESUMO

AIMS/HYPOTHESIS: The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice. METHODS: Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of diabetes (db/db mice) at 6 weeks old (prediabetes) and 16 weeks old (after diabetes onset) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and overnight fasting-1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca2+ concentration with Fura-2 leakage resistant (Fura-2 LR), cytosolic free Zn2+ concentration with Fluozin-3, and NAD(P)H by autofluorescence. RESULTS: Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10-30 mmol/l vs 2-5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca2+ concentration and NAD(P)H levels, or intracellular Zn2+ concentration vs WT mice. In MIN6 cells, knockdown of MT1 but not MT2 potentiated GSIS, suggesting that Mt1 rather than Mt2 affects beta cell function. CONCLUSIONS/INTERPRETATION: These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Metalotioneína/metabolismo , Acrilatos , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Feminino , Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Metalotioneína/genética , Camundongos , Obesidade/genética , Obesidade/metabolismo , Éteres Fenílicos , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo
16.
Am J Physiol Endocrinol Metab ; 315(4): E634-E637, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989852

RESUMO

Inappropriate insulin secretion from ß-cells is considered as an early sign of impaired glucose tolerance and type 2 diabetes (T2D). Glucokinase (GCK) is an important enzyme that regulates glucose metabolism and ensures that the normal circulating glucose concentrations are maintained. GCK expression is induced by glucose and regulated via transcription factors and regulatory proteins. Recently, microRNA-206 (miR-206) was reported to regulate GCK and alter glucose tolerance in normal and high-fat diet-fed mice. Although the study findings have implications for human diabetes, studies in human islets are lacking. Here, we analyze human islets from individuals without or with T2D, using TaqMan-based real-time qPCR at the tissue (isolated islet) level as well as at single cell resolution, to assess the relationship between miR-206 and GCK expression in normal and T2D human islets. Our data suggest that, unlike mouse islets, human islets do not exhibit any correlation between miR-206 and GCK transcripts. These data implicate the need for further studies aimed toward exploring its potential role(s) in human islets.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única
17.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347820

RESUMO

Nonobese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity similar to human Sjögren syndrome. In both humans and NOD mice, the early immune response that drives T-cell infiltration into lacrimal and salivary glands is poorly understood. In NOD mice, lacrimal gland autoimmunity spontaneously occurs only in males with testosterone playing a role in promoting lacrimal gland inflammation, while female lacrimal glands are protected by regulatory T cells (Tregs). The mechanisms of this male-specific lacrimal gland autoimmunity are not known. Here, we studied the effects of Treg depletion in hormone-manipulated NOD mice and lacrimal gland gene expression to determine early signals required for lacrimal gland inflammation. While Treg-depletion was not sufficient to drive dacryoadenitis in castrated male NOD mice, chemokines (Cxcl9, Ccl19) and other potentially disease-relevant genes (Epsti1, Ubd) were upregulated in male lacrimal glands. Expression of Cxcl9 and Ccl19, in particular, remained significantly upregulated in the lacrimal glands of lymphocyte-deficient NOD-severe combined immunodeficiency (SCID) mice and their expression was modulated by type I interferon signaling. Notably, Ifnar1-deficient NOD mice did not develop dacryoadenitis. Together these data identify disease-relevant genes upregulated in the context of male-specific dacryoadenitis and demonstrate a requisite role for type I interferon signaling in lacrimal gland autoimmunity in NOD mice.


Assuntos
Dacriocistite/metabolismo , Interferon Tipo I/metabolismo , Síndrome de Sjogren/metabolismo , Animais , Células Cultivadas , Quimiocina CCL19/metabolismo , Quimiocina CXCL9/metabolismo , Feminino , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
18.
Diabetologia ; 60(10): 1961-1971, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735354

RESUMO

AIMS/HYPOTHESIS: Beta cell replacement is a potential cure for type 1 diabetes. In humans, islet transplants are currently infused into the liver via the portal vein, although this site has disadvantages. Here, we investigated alternative transplantation sites for human and murine islets in recipient mice, comparing the portal vein with quadriceps muscle and kidney, liver and spleen capsules. METHODS: Murine islets were isolated from C57BL6/J mice and transplanted into syngeneic recipients. Human islets were isolated and transplanted into either severe combined immunodeficiency (SCID) or recombination-activating gene 1 (RAG-1) immunodeficient recipient mice. All recipient mice were 8-12 weeks of age and had been rendered diabetic (defined as blood glucose concentrations ≥20 mmol/l on two consecutive days before transplantation) by alloxan tetrahydrate treatment. Islets were transplanted into five different sites (portal vein, quadriceps muscle, kidney, liver and spleen capsules). Blood glucose concentrations were monitored twice weekly until mice were killed. Dose-response studies were also performed to determine the minimum number of islets required to cure diabetes ('cure' is defined for this study as random fed blood glucose of <15 mmol/l). RESULTS: For transplantation of murine islets into the different sites, the kidney yielded 100% success, followed by muscle (70%), portal vein (60%), spleen capsule (29%) and liver capsule (0%). For human islets, transplantation into the kidney cured diabetes in 75-80% of recipient mice. Transplantation into muscle and portal vein had intermediate success (both 29% at 2000 islet equivalents), while transplantation into liver and spleen capsule failed (0%). With increased islet mass, success rates for muscle grafts improved to 52-56%. CONCLUSIONS/INTERPRETATION: For both human and murine islets, equivalent or superior glucose lowering results were obtained for transplantation into skeletal muscle, compared with the portal vein. Unfortunately, kidney grafts are not feasible in human recipients. Skeletal muscle offers easier access and greater potential for protocol biopsies. This study suggests that human trials of muscle as a transplant site may be warranted.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Rim/cirurgia , Fígado/cirurgia , Veia Porta/cirurgia , Músculo Quadríceps/cirurgia , Baço/cirurgia , Animais , Glicemia , Diabetes Mellitus Experimental/sangue , Sobrevivência de Enxerto , Humanos , Camundongos , Camundongos Endogâmicos C57BL
19.
Apoptosis ; 21(4): 379-89, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758067

RESUMO

Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.


Assuntos
Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Células Secretoras de Insulina/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspases/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor fas/metabolismo
20.
Eur J Immunol ; 45(9): 2494-503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959978

RESUMO

Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4(+) and CD8(+) T cells have been shown to mediate beta-cell killing. While CD8(+) T cells can directly recognize MHC class I on beta cells, the interaction between CD4(+) T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA-DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4(+) T cells with T-cell receptors that recognize beta-cell antigens. Acute infiltration of CD4(+) T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN-γ increased MHC class II gene expression, and blocking IFN-γ signaling in beta cells inhibited MHC class II upregulation. IFN-γ also increased HLA-DR expression in human islets. MHC class II(+) beta cells stimulated the proliferation of beta-cell-specific CD4(+) T cells. Our study indicates that MHC class II molecules may play an important role in beta-cell interaction with CD4(+) T cells in the development of type 1 diabetes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Antígenos HLA-DQ/imunologia , Antígenos HLA-DR/imunologia , Células Secretoras de Insulina/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Comunicação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citotoxicidade Imunológica , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Regulação da Expressão Gênica , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Interferon gama/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA