Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2118816119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394866

RESUMO

Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)­induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Infecções , Lisofosfolipídeos , Neoplasias , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/imunologia , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Infecções/imunologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neoplasias/imunologia , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Am J Hum Genet ; 107(6): 1113-1128, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232676

RESUMO

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.


Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , Xenopus
3.
PLoS Biol ; 16(9): e2004874, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30256801

RESUMO

Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Fertilidade , Células de Sertoli/metabolismo , Espermatogênese , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Adesão Celular , Células Cultivadas , Forminas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimerização , Túbulos Seminíferos/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo
4.
J Allergy Clin Immunol ; 143(2): 631-643, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29935220

RESUMO

BACKGROUND: IL-23 is the key cytokine for generation of pathogenic IL-17-producing helper T (TH17) cells, which contribute critically to autoimmune diseases. However, how IL-23 generates pathogenic TH17 cells remains to be elucidated. OBJECTIVES: We sought to examine the involvement, molecular mechanisms, and clinical implications of prostaglandin (PG) E2-EP2/EP4 signaling in induction of IL-23-driven pathogenic TH17 cells. METHODS: The role of PGE2 in induction of pathogenic TH17 cells was investigated in mouse TH17 cells in culture in vitro and in an IL-23-induced psoriasis mouse model in vivo. Clinical relevance of the findings in mice was examined by using gene expression profiling of IL-23 and PGE2-EP2/EP4 signaling in psoriatic skin from patients. RESULTS: IL-23 induces Ptgs2, encoding COX2 in TH17 cells, and produces PGE2, which acts back on the PGE receptors EP2 and EP4 in these cells and enhances IL-23-induced expression of an IL-23 receptor subunit gene, Il23r, by activating signal transducer and activator of transcription (STAT) 3, cAMP-responsive element binding protein 1, and nuclear factor κ light chain enhancer of activated B cells (NF-κB) through cyclic AMP-protein kinase A signaling. This PGE2 signaling also induces expression of various inflammation-related genes, which possibly function in TH17 cell-mediated pathology. Combined deletion of EP2 and EP4 selectively in T cells suppressed accumulation of IL-17A+ and IL-17A+IFN-γ+ pathogenic Th17 cells and abolished skin inflammation in an IL-23-induced psoriasis mouse model. Analysis of human psoriatic skin biopsy specimens shows positive correlation between PGE2 signaling and the IL-23/TH17 pathway. CONCLUSIONS: T cell-intrinsic EP2/EP4 signaling is critical in IL-23-driven generation of pathogenic TH17 cells and consequent pathogenesis in the skin.


Assuntos
Inflamação/imunologia , Psoríase/imunologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células Th17/imunologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imiquimode , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais
5.
Genes Cells ; 18(10): 873-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23890216

RESUMO

mDia is an actin nucleator and polymerization factor regulated by the small GTPase Rho and consists of three isoforms. Here, we found that mice lacking mDia1 and mDia3, two isoforms expressed in the brain, in combination (mDia-DKO mice) show impaired left-right limb coordination during locomotion and aberrant midline crossing of axons of corticospinal neurons and spinal cord interneurons. Given that mice lacking Ephrin-B3-EphA4 signaling show a similar impairment in locomotion, we examined whether mDia is involved in Ephrin-B3-EphA4 signaling for axon repulsion. In primary cultured neurons, mDia deficiency impairs growth cone collapse and axon retraction induced by chemo-repellants including EphA ligands. In mDia-DKO mice, the Ephrin-B3-expressing midline structure in the spinal cord is disrupted, and axons aberrantly cross the spinal cord midline preferentially through the region devoid of Ephrin-B3. Therefore, mDia plays multiple roles in the proper formation of the neural network in vivo.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/fisiologia , Efrina-B3/metabolismo , Medula Espinal/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Membro Anterior/fisiologia , Forminas , Marcha/fisiologia , Membro Posterior/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptor EphA4/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/citologia
6.
Elife ; 122024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38276879

RESUMO

Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The extracellular signal-regulated kinase (ERK) activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.


Assuntos
Cálcio , MAP Quinases Reguladas por Sinal Extracelular , Camundongos , Animais , Cães , Dinoprostona , Rim , Fosforilação
7.
Front Immunol ; 15: 1467415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430739

RESUMO

Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.


Assuntos
Movimento Celular , Forminas , Linfócitos T , Forminas/metabolismo , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Miosina Tipo II/metabolismo
8.
FEBS Open Bio ; 14(6): 906-921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604990

RESUMO

The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, ß-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/ß-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.


Assuntos
Células Endoteliais , Camundongos Knockout , Quinases Associadas a rho , Animais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Camundongos , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Caderinas/metabolismo , Caderinas/genética , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Antígenos CD
9.
Sci Rep ; 13(1): 7058, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120440

RESUMO

Allergic contact dermatitis (ACD) is a type IV hypersensitivity mainly mediated by Th1/Th17 immune response. Topical corticosteroid is currently the first-line treatment for allergic contact dermatitis (ACD) and systemic administration of immunosuppressive drugs are used in patients with severe disseminated cases. However, increased risk of adverse effects has limited their use. Thus, the development of a novel immunosuppressant for ACD with low toxicity is a challenging issue. In this study, we began our study by using a murine contact hypersensitivity (CHS) model of ACD to examine the immunosuppressive effects of DYRK1B inhibition. We found that mice treated with a selective DYRK1B inhibitor show reduced ear inflammation. In addition, a significant reduction of Th1 and Th17 cells in the regional lymph node upon DYRK1B inhibition was observed by FACS analysis. Studies in vitro further revealed that DYRK1B inhibitor does not only suppressed Th1 and Th17 differentiation, but also promotes regulatory T cells (Treg) differentiation. Mechanistically, FOXO1 signaling was enhanced due to the suppression of FOXO1Ser329 phosphorylation in the presence of DYRK1B inhibitor. Therefore, these findings suggest that DYRK1B regulates CD4 T cell differentiation through FOXO1 phosphorylation and DYRK1B inhibitor has a potential as a novel agent for treatment of ACD.


Assuntos
Dermatite Alérgica de Contato , Células Th17 , Animais , Camundongos , Células Th17/patologia , Inflamação , Linfócitos T CD4-Positivos/patologia , Imunossupressores/uso terapêutico , Imunidade
10.
Genes Cells ; 16(10): 1012-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21895889

RESUMO

Rho-associated coiled-coil-forming protein serine/threonine kinase (ROCK) consisting of two isoforms, ROCK-I and ROCK-II, functions downstream of the small GTPase Rho for assembly of actomyosin bundles. To examine the role of ROCK isoforms in vivo, we previously generated and examined mice deficient in each of the two isoforms individually. Here, we further examined the in vivo role of ROCK isoforms by generating mice deficient in both isoforms. Cross-mating of ROCK-I(+/-) ROCK-II(+/-) double heterozygous mice showed that all of the ROCK-I(-/-) ROCK-II(-/-) homozygous mice die in utero before 9.5 days post-coitum (dpc) and ROCK-I(-/-) ROCK-II(+/-) homo-heterozygous or ROCK-I(+/-) ROCK-II(-/-) hetero-homozygous mice die during a period from 9.5 to 12.5 dpc, whereas mice of other genotypes survive until 12.5 dpc with the expected Mendelian ratio. All of the ROCK-I(+/-) ROCK-II(-/-) or ROCK-I(-/-) ROCK-II(+/-) mice showed impaired body turning and defective vascular remodeling in the yolk sac. Impairment of vascular remodeling was also observed in wild-type embryos treated ex vivo with a ROCK inhibitor, Y-27632. These results suggest that ROCK isoforms function redundantly during embryogenesis and play a critical role in vascular development.


Assuntos
Saco Vitelino/irrigação sanguínea , Saco Vitelino/enzimologia , Quinases Associadas a rho/deficiência , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/genética , Mutação/genética , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Fenótipo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
11.
Reprod Biomed Online ; 24(6): 603-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503269

RESUMO

This article reports a case of macrocephalic sperm head syndrome, which is defined as the presence of a very high percentage of spermatozoa with enlarged heads and multiple flagellae, together with detailed morphological analysis. After a couple presented with infertility, sperm analysis showed severe teratozoospermia and almost all of the spermatozoa had macrocephaly with multiple tails. The morphological analysis revealed that most of the sperm heads contained several nuclei and had a similar number of tails as that of nuclei. However, detailed analysis revealed that there were a very few spermatozoa with an almost normal morphology. After genetic counselling, intracytoplasmic sperm injection was performed using a few spermatozoa that had an almost normal morphology, resulting in pregnancy and successful delivery. Even in macrocephalic sperm head syndrome, which may be caused by meiotic division failure, pregnancy is possible if some spermatozoa with almost normal morphology can be utilized, although there may be genetic risks.


Assuntos
Infertilidade Masculina/terapia , Resultado da Gravidez , Cabeça do Espermatozoide , Injeções de Esperma Intracitoplásmicas , Espermatozoides/anormalidades , Adulto , Feminino , Humanos , Masculino , Gravidez , Análise do Sêmen , Síndrome , Resultado do Tratamento
12.
STAR Protoc ; 3(4): 101906, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595953

RESUMO

Here, we describe a protocol for single-cell isolation from the primary culture of normal human epidermal keratinocytes derived from neonatal foreskin. The cell culture conditions have been optimized for inducing expression of keratinocyte differentiation markers. Cells are cultured in the absence or presence of a bioactive lipid lysophosphatidic acid (LPA). Single cells are isolated by Fluidigm C1 system. This is followed by cDNA library preparation using Takara SMART-Seq v4 Ultra and Illumina Nextera XT kit for RNA sequencing. For complete details on the use and execution of this protocol, please refer to Siriwach et al. (2022).1.


Assuntos
Técnicas de Cultura de Células , Queratinócitos , Recém-Nascido , Humanos , Biblioteca Gênica , Análise de Sequência de RNA/métodos , Separação Celular
13.
iScience ; 25(4): 104130, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35391830

RESUMO

Keratinocyte differentiation is an intricate process that is regulated by multiple mediators. Using cultured human keratinocytes, we found that lysophosphatidic acid (LPA) induced the differentiation of a previously unsuspected keratinocyte subpopulation expressing the extracellular matrix protein, thrombospondin-1 (THBS1). This action of LPA was mediated by the RHO/ROCK-SRF signaling downstream of LPA1 and LPA5 receptors and required ERK activity. Suppression of THBS1 in vitro suggested a migratory role of THBS1+ keratinocytes. Moreover, we analyzed publicly deposited single-cell RNA sequencing dataset and identified Thbs1-expressing keratinocytes in the mouse wound skin. Immunohistochemistry analysis revealed that Thbs1+ keratinocytes were apparently differentiated from basal keratinocytes upon wounding, subsequently polarized and migrated suprabasally toward the wound front, and eventually underwent terminal differentiation in the neo-epidermis. Importantly, inhibition of Erk activity suppressed Thbs1+ keratinocyte differentiation in wound healing. Based on these findings, we suggest that THBS1+ keratinocyte is a migratory keratinocyte subpopulation that facilitates epidermal wound healing.

14.
Cell Rep ; 39(10): 110914, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675777

RESUMO

Active inflammation generally promotes immune activation. However, in the tumor microenvironment (TME), active inflammation occurs in parallel with immunosuppression, and both contribute to tumor growth. Why inflammation does not lead to immune activation in TME remains unclear. In this study, using the immune checkpoint inhibitor-insensitive mouse cancer model and single-cell RNA sequencing, we show that PGE2-EP2/EP4 signaling simultaneously promotes active inflammation by inducing expression of the NF-κB genes in myeloid cells and elicits immunosuppression by driving the mregDC (mature DC enriched in immunoregulatory molecules)-Treg (regulatory T cell) axis for Treg recruitment and activation in the tumor. Importantly, the EP2/EP4 expression level is strongly correlated with the gene signatures of both active inflammation and the mregDC-Treg axis and has significant prognosis value in various human cancers. Thus, PGE2-EP2/EP4 signaling functions as the key regulatory node linking active inflammation and immunosuppression in TME, which can be targeted by EP2 and EP4 antagonists for cancer therapeutics.


Assuntos
Dinoprostona , Receptores de Prostaglandina E Subtipo EP4 , Animais , Dinoprostona/metabolismo , Terapia de Imunossupressão , Inflamação , Camundongos , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral
15.
Structure ; 29(3): 200-202, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667375

RESUMO

In this issue of Structure, Nojima et al. (2021) report the structure of the PGE2-EP4-Gs complex by cryo-electron microscopy. This work shows unique modes of ligand binding, transduction mechanism, and G protein coupling of EP4, and serves as a starting point for development of more selective drugs.


Assuntos
Aspirina , AMP Cíclico , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP , Receptores de Prostaglandina E Subtipo EP4/metabolismo
16.
Cardiovasc Res ; 117(4): 1103-1117, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647865

RESUMO

AIMS: Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. METHODS AND RESULTS: Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10-12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy-related genes, including immediate early genes, in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the filamentous/globular (F/G)-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors and serum response factor were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. CONCLUSION: mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.


Assuntos
Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Citoesqueleto de Actina/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Pressão Arterial , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Forminas/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Ligadura , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
17.
JAMA Neurol ; 78(8): 993-1003, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125151

RESUMO

Importance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective: To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants: A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures: Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results: Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance: These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.


Assuntos
Forminas/genética , Doença de Moyamoya/genética , Adulto , Idade de Início , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Estudos de Coortes , Simulação por Computador , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/diagnóstico por imagem , Fenótipo , Análise de Sequência de RNA , População Branca , Sequenciamento do Exoma
18.
J Cell Biol ; 168(6): 941-53, 2005 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-15753128

RESUMO

Rho-associated kinase (ROCK) I mediates signaling from Rho to the actin cytoskeleton. To investigate the in vivo functions of ROCK-I, we generated ROCK-I-deficient mice. Loss of ROCK-I resulted in failure of eyelid closure and closure of the ventral body wall, which gave rise to the eyes open at birth and omphalocele phenotypes in neonates. Most ROCK-I(-/-) mice died soon after birth as a result of cannibalization of the omphalocele by the mother. Actin cables that encircle the eye in the epithelial cells of the eyelid were disorganized and accumulation of filamentous actin at the umbilical ring was impaired, with loss of phosphorylation of the myosin regulatory light chain (MLC) at both sites, in ROCK-I(-/-) embryos. Stress fiber formation and MLC phosphorylation induced by EGF were also attenuated in primary keratinocytes from ROCK-I(-/-) mice. These results suggest that ROCK-I regulates closure of the eyelids and ventral body wall through organization of actomyosin bundles.


Assuntos
Parede Abdominal/embriologia , Actomiosina/metabolismo , Pálpebras/embriologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Pálpebras/anormalidades , Pálpebras/ultraestrutura , Glutationa Transferase/metabolismo , Hérnia Umbilical/etiologia , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Leves de Miosina/efeitos dos fármacos , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , Fibras de Estresse/efeitos dos fármacos , Cicatrização/genética , beta-Galactosidase/metabolismo , Quinases Associadas a rho
19.
J Invest Dermatol ; 139(5): 1010-1022, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30447238

RESUMO

The skin barrier protects the body from water loss, allergens, and pathogens. Profilaggrin is produced by differentiated keratinocytes and is processed into filaggrin monomers. These monomers cross-link keratin filaments and are also decomposed to natural moisturizing factors in the stratum corneum for skin hydration and barrier function. Deficits in FLG expression impair skin barrier function and underlie skin diseases such as dry skin and atopic dermatitis. However, intrinsic factors that regulate FLG expression and their mechanisms of action remain unknown. Here, we show that lysophosphatidic acid induces FLG expression in human keratinocytes via the LPAR1 and LPAR5 receptors and the downstream RHO-ROCK-SRF pathway. Comprehensive gene profiling analysis further showed that lysophosphatidic acid not only induces FLG expression but also facilitates keratinocyte differentiation. Moreover, lysophosphatidic acid treatment significantly up-regulated FLG production in a three-dimensional culture model of human skin and promoted barrier function in mouse skin in vivo. Thus, our work shows a previously unsuspected role for lysophosphatidic acid and its downstream signaling in the maintenance of skin homeostasis, which may serve as a novel therapeutic target for skin barrier dysfunction.


Assuntos
Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas Filagrinas , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ácidos Lisofosfatídicos/metabolismo , Absorção Cutânea/genética , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/genética , Regulação para Cima
20.
FEBS Lett ; 592(11): 1763-1776, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749605

RESUMO

One of the main research areas in biology from the mid-1980s through the 1990s was the elucidation of signaling pathways governing cell responses. These studies brought, among other molecules, the small GTPase Rho to the epicenter. Rho signaling research has since expanded to all areas of biology and medicine. Here, we describe how Rho emerged as a key molecule governing cell morphogenesis and movement, how it was linked to actin reorganization, and how the study of Rho signaling has expanded from cultured cells to whole biological systems. We then give an overview of the current research status of Rho signaling in development, brain, cardiovascular system, immunity and cancer, and discuss the future directions of Rho signaling research, with emphasis on one Rho effector, ROCK*. *The Rho GTPase family. Rho family GTPases have now expanded to contain 20 members. Amino acid sequences of 20 Rho GTPases found in human were aligned and the phylogenetic tree was generated by ClustalW2 software (EMBL-EBI) based on NJ algorithm. The subfamilies of the Rho GTPases are highlighted by the circle and labeled on the right side. Rho cited in this review refers to the original members of Rho subfamily, RhoA, RhoB and RhoC, that are C3 substrates, and, unless specified, not to other members of the Rho subfamily such as Rac, Cdc42, and Rnd.


Assuntos
Encéfalo/imunologia , Sistema Cardiovascular/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Proteínas rho de Ligação ao GTP/imunologia , Quinases Associadas a rho/imunologia , Animais , Encéfalo/patologia , Sistema Cardiovascular/patologia , História do Século XX , História do Século XXI , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/história , Neoplasias/genética , Neoplasias/patologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/história , Quinases Associadas a rho/genética , Quinases Associadas a rho/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA