Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 133(3): 771-8, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23389942

RESUMO

We previously reported that plasmacytoid dendritic cells (pDCs) infiltrating breast tumors are impaired for their interferon-α (IFN-α) production, resulting in local regulatory T cells amplification. We designed our study to decipher molecular mechanisms of such functional defect of tumor-associated pDC (TApDC) in breast cancer. We demonstrate that besides IFN-α, the production by Toll-like receptor (TLR)-activated healthy pDC of IFN-ß and TNF-α but not IP-10/CXCL10 nor MIP1-α/CCL3 is impaired by the breast tumor environment. Importantly, we identified TGF-ß and TNF-α as major soluble factors involved in TApDC functional alteration. Indeed, recombinant TGF-ß1 and TNF-α synergistically blocked IFN-α production of TLR-activated pDC, and neutralization of TGF-ß and TNF-α in tumor-derived supernatants restored pDCs' IFN-α production. The involvment of tumor-derived TGF-ß was further confirmed in situ by the detection of phosphorylated Smad2 in the nuclei of TApDC in breast tumor tissues. Mechanisms of type I IFN inhibition did not involve TLR downregulation but the inhibition of IRF-7 expression and nuclear translocation in pDC after their exposure to tumor-derived supernatants or recombinant TGF-ß1 and TNF-α. Our findings indicate that targeting TApDC to restore their IFN-α production might be an achievable strategy to induce antitumor immunity in breast cancer by combining TLR7/9-based immunotherapy with TGF-ß and TNF-α antagonists.


Assuntos
Neoplasias da Mama/metabolismo , Células Dendríticas/metabolismo , Interferon-alfa/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Quimiocina CCL3/biossíntese , Quimiocina CXCL10/biossíntese , Feminino , Humanos , Fator Regulador 7 de Interferon/biossíntese , Interferon beta/biossíntese , Fosforilação , Transporte Proteico , Proteínas Recombinantes/farmacologia , Proteína Smad2/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA