Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(14): e2309014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972262

RESUMO

Developing single-atomic catalysts with superior selectivity and outstanding stability for CO2 electroreduction is desperately required but still challenging. Herein, confinement strategy and three-dimensional (3D) nanoporous structure design strategy are combined to construct unsaturated single Ni sites (Ni-N3) stabilized by pyridinic N-rich interconnected carbon nanosheets. The confinement agent chitosan and its strong interaction with g-C3N4 nanosheet are effective for dispersing Ni and restraining their agglomeration during pyrolysis, resulting in ultrastable Ni single-atom catalyst. Due to the confinement effect and structure advantage, such designed catalyst exhibits a nearly 100% selectivity and remarkable stability for CO2 electroreduction to CO, exceeding most reported state-of-the-art catalysts. Specifically, the CO Faradaic efficiency (FECO) maintains above 90% over a broad potential range (-0.55 to -0.95 V vs. RHE) and reaches a maximum value of 99.6% at a relatively low potential of -0.67 V. More importantly, the FECO is kept above 95% within a long-term 100 h electrolyzing. Density functional theory (DFT) calculations explain the high selectivity for CO generation is due to the high energy barrier required for hydrogen evolution on the unsaturated Ni-N3. This work provides a new designing strategy for the construction of ultrastable and highly selective single-atom catalysts for efficient CO2 conversion.

2.
Comput Intell Neurosci ; 2021: 7618828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567103

RESUMO

Aircraft, as one of the indispensable transport tools, plays an important role in military activities. Therefore, it is a significant task to locate the aircrafts in the remote sensing images. However, the current object detection methods cause a series of problems when applied to the aircraft detection for the remote sensing image, for instance, the problems of low rate of detection accuracy and high rate of missed detection. To address the problems of low rate of detection accuracy and high rate of missed detection, an object detection method for remote sensing image based on bidirectional and dense feature fusion is proposed to detect aircraft targets in sophisticated environments. On the fundamental of the YOLOv3 detection framework, this method adds a feature fusion module to enrich the details of the feature map by mixing the shallow features with the deep features together. Experimental results on the RSOD-DataSet and NWPU-DataSet indicate that the new method raised in the article is capable of improving the problems of low rate of detection accuracy and high rate of missed detection. Meanwhile, the AP for the aircraft increases by 1.57% compared with YOLOv3.


Assuntos
Aeronaves , Tecnologia de Sensoriamento Remoto
3.
Biosens Bioelectron ; 89(Pt 2): 735-742, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865109

RESUMO

We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL-1. In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Grafite/química , Nanocompostos/química , Proteínas Proto-Oncogênicas c-sis/sangue , Prata/química , Becaplermina , Carbono/química , Espectroscopia Dielétrica/métodos , Humanos , Limite de Detecção , Nanocompostos/ultraestrutura , Óxidos/química
4.
Materials (Basel) ; 7(6): 4587-4600, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28788695

RESUMO

Graphene has attracted enormous attention owing to its extraordinary properties, while graphene-based nanocomposites hold promise for many applications. In this paper, we present a two-step exploitation method for preparation of graphene oxides and a facile solvothermal route for preparation of few-layer graphene nanosheets and graphene/WO3 nanocomposites in an ethanol-distilled water medium. The as-synthesized samples were characterized by using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) and gas-sensing test. The resistivity of the thick-film gas sensors based on sandwich-like graphene/WO3 nanocomposites can be controlled by varying the amount of graphene in the composites. Graphene/WO3 nanocomposites with graphene content higher than 1% show fast response, high selectivity and fine sensitivity to NOx.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA