Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423631

RESUMO

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Assuntos
Calmodulina , Caspases , Animais , Calmodulina/genética , Calmodulina/metabolismo , Caspases/metabolismo , Caspase 3/metabolismo , Arginina , Catálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Curr Issues Mol Biol ; 46(9): 9916-9927, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39329943

RESUMO

Dermatan sulfate and chondroitin sulfate are dietary supplements that can be utilized as prophylactics against thrombus formation. Low-molecular-weight dermatan sulfate (LMWDS) is particularly advantageous due to its high absorbability. The enzymatic synthesis of low-molecular-weight dermatan sulfates (LMWDSs) using chondroitin B lyase is a sustainable and environmentally friendly approach to manufacturing. However, the industrial application of chondroitin B lyases is severely hampered by their low catalytic activity. To improve the activity, a semi-rational design strategy of engineering the substrate-binding domain of chondroitin B lyase was performed based on the structure. The binding domain was subjected to screening of critical residues for modification using multiple sequence alignments and molecular docking. A total of thirteen single-point mutants were constructed and analyzed to assess their catalytic characteristics. Out of these, S90T, N103C, H134Y, and R159K exhibited noteworthy enhancements in activity. This study also examined combinatorial mutagenesis and found that the mutant H134Y/R159K exhibited a substantially enhanced catalytic activity of 1266.74 U/mg, which was 3.21-fold that of the wild-type one. Molecular docking revealed that the enhanced activity of the mutant could be attributed to the formation of new hydrogen bonds and hydrophobic interactions with the substrate as well as neighbor residues. The highly active mutant would benefit the utilization of chondroitin B lyase in pharmaceuticals and functional foods.

3.
Small ; 20(34): e2401314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644698

RESUMO

Bismuth-based materials have been recognized as the appealing anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity. However, the kinetics sluggishness and capacity decline induced by the structure distortion predominately retard their further development. Here, a heterostructure of polyaniline intercalated Bi2O2CO3/MXene (BOC-PA/MXene) hybrids is reported via simple self-assembly strategy. The ingenious design of heterointerface-rich architecture motivates significantly the interior self-built-in electric field (IEF) and high-density electron flow, thus accelerating the charge transfer and boosting ion diffusion. As a result, the hybrids realize a high reversible specific capacity, satisfying rate capability as well as long-term cycling stability. The in/ex situ characterizations further elucidate the stepwise intercalation-conversion-alloying reaction mechanism of BOC-PA/MXene. More encouragingly, the full cell investigation further highlights its competitive merits for practical application in further PIBs. The present work not only opens the way to the design of other electrodes with an appropriate working mechanism but also offers inspiration for built-in electric-field engineering toward high-performance energy storage devices.

4.
Small ; 20(5): e2305855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759418

RESUMO

Solar interfacial evaporation is a promising method for solving the global shortage of fresh water. While 2D evaporators can efficiently localize solar-converted heat at the thin layer of the water-air interface, 3D solar evaporators can maximize energy reutilization while maintaining effective mass transport ability, few studies are conducted to explore the effect of gradient porosity on evaporation performance. In this study, a multifield assisted strategy based on a gradient 3D structure with high tortuosity is proposed, which creates a thermal field environment for efficient evaporation through high absorption of sunlight and excellent photothermal conversion and uses the gradient structure to optimize the internal pressure field to enhance water evaporation and transport. This hierarchically nanostructured solar absorber, with porosity inhomogeneity-induced pressure gradient and optimized temperature management, is a valuable design idea for manufacturing a more efficient 3D solar evaporator in the field of seawater desalination. Owing to the understanding of optimizing the dimension by various simulation parameters, the evaporation efficiencies of such structures are found to be 165.7%, suppressing the most evaporator. Moreover, it can provide new ideas and references for the fields of mass transfer and thermal management.

5.
Rev Cardiovasc Med ; 25(6): 193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39076343

RESUMO

Background: The impact of dominant ventricular morphology on Fontan patient outcomes remain controversial. This study evaluates long-term results of right ventricle (RV) dominance versus left ventricle (LV) dominance in Fontan circulation without hypoplastic left heart syndrome (HLHS). Methods: We retrospectively examined 323 Fontan operations from our center. To minimize pre- and intra-Fontan heterogeneity, 42 dominant RV patients were matched with 42 dominant LV patients using propensity score matching, allowing for a comparative analysis of outcomes between groups. Results: The mean follow-up was 8.0 ± 4.6 years for matched RV dominant and 6.5 ± 4.7 years for matched LV dominant group (p > 0.05), showing no significant difference. The cumulative incidence of moderate or greater atrioventricular valve regurgitation was also comparable between the two groups (p > 0.05). Similarly, 10-year freedom from death or transplantation following the Fontan operation was 84% ± 7% in the matched dominant RV group, similar to 81% ± 7% in the matched dominant LV group (p > 0.05). The 10-year freedom from Fontan failure was 78% ± 8% in the matched dominant RV group, also similar to 75% ± 8% in the matched dominant LV group (p > 0.05). Multivariate analysis did not identify RV dominance as a risk factor for Fontan failure (p > 0.05). Conclusions: In the pre- and intra-Fontan context, RV dominance demonstrated similar and comparable long-term outcomes compared to LV dominance in non-HLHS Fontan circulation.

6.
Arch Microbiol ; 206(3): 125, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411841

RESUMO

Non-specific endonucleases can be used for the digestion of nucleic acids because they hydrolyze DNA/RNA into 3-5 base pairs (bp) length oligonucleotide fragments without strict selectivity. In this work, a novel non-specific endonuclease from Pseudomonas fluorescens (PfNuc) with high activities for both DNA and RNA was successfully cloned and expressed in Escherichia coli. The production of PfNuc in flask scale could be achieved to 1.73 × 106 U/L and 4.82 × 106 U/L for DNA and RNA by investigation of the culture and induction conditions. The characterization of PfNuc indicated that it was Mg2+-dependent and the catalytic activity was enhanced by 3.74 folds for DNA and 1.06 folds for RNA in the presence of 5 mM Mg2+. The specific activity of PfNuc for DNA was 1.44 × 105 U/mg at pH 8.0 and 40 °C, and 3.93 × 105 U/mg for RNA at pH 8.5 and 45 °C. The Km of the enzyme for both DNA and RNA was close to 43 µM. The Vmax was 6.40 × 105 U/mg and 1.11 × 106 U/mg for DNA and RNA, respectively. There was no observed activity loss when PfNuc was stored at 4 °C and - 20 °C after 28 days or 10 repeated freeze-thaw cycles at - 80 °C. Molecular docking revealed that PfNuc formed 17 and 19 hydrogen bonds with single-stranded RNA and double-stranded DNA, respectively. These results could explain the high activity and stability of PfNuc, suggesting its great potential applications in the industry and clinic.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Simulação de Acoplamento Molecular , RNA , Endonucleases/genética , Escherichia coli/genética , DNA , Clonagem Molecular
7.
Pediatr Res ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951655

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CCHD) with multifactorial etiology. We aimed to investigate the metabolic profiles of CCHD and their independent contributions to TOF. METHODS: A cohort comprising 42 individuals with TOF and atrial septal defect (ASD) was enrolled. Targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was employed to systematically analyze metabolite levels and identify TOF-associated metabolic profiles. RESULTS: Of 370 identified metabolites in tissue and 284 in plasma, over one-third of metabolites showed an association with microbiome. Differential metabolic pathways including amino acids biosynthesis, ABC (ATP-binding cassette) transporters, carbon metabolism, and fatty acid biosynthesis, shed light on TOF biological phenotypes. Additionally, ROC curves identified potential biomarkers, such as erythronic acid with an AUC of 0.868 in plasma, and 3-ß-hydroxy-bisnor-5-cholenic acid, isocitric acid, glutaric acid, ortho-Hydroxyphenylacetic acid, picolinic acid with AUC close to 1 in tissue, whereas the discriminative performance of those substances significantly improved when combined with clinical phenotypes. CONCLUSIONS: Distinct metabolic profiles exhibited robust discriminatory capabilities, effectively distinguishing TOF from ASD patients. These metabolites may serve as biomarkers or key molecular players in the intricate metabolic pathways involved in CCHD development. IMPACT: Distinct metabolic profiles exhibited robust discriminatory capabilities, effectively distinguishing Tetralogy of Fallot from atrial septal defect patients. Similar profiling but inconsistent differential pathways between plasma and tissue. More than one-third metabolites in plasma and tissue are associated with the microbiome. The discovery of biomarkers is instrumental in facilitating early detection and diagnosis of Tetralogy of Fallot. Disturbed metabolism offers insights into interpretation of pathogenesis of Tetralogy of Fallot.

8.
Circ Res ; 131(9): 768-787, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36134578

RESUMO

RATIONALE: Vascular smooth muscle cells (VSMCs) phenotype switch from contractile to proliferative phenotype is a pathological hallmark in various cardiovascular diseases. Recently, a subset of long noncoding RNAs was identified to produce functional polypeptides. However, the functional impact and regulatory mechanisms of long noncoding RNAs in VSMCs phenotype switching remain to be fully elucidated. OBJECTIVES: To illustrate the biological function and mechanism of a VSMC-enriched long noncoding RNA and its encoded peptide in VSMC phenotype switching and vascular remodeling. RESULTS: We identified a VSMC-enriched transcript encoded by a previously uncharacterized gene, which we called phenotype switching regulator (PSR), which was markedly upregulated during vascular remodeling. Although PSR was annotated as a long noncoding RNA, we demonstrated that the lncPSR (PSR transcript) also encoded a protein, which we named arteridin. In VSMCs, both arteridin and lncPSR were necessary and sufficient to induce phenotype switching. Mechanistically, arteridin and lncPSR regulate downstream genes by directly interacting with a transcription factor YBX1 (Y-box binding protein 1) and modulating its nuclear translocation and chromatin targeting. Intriguingly, the PSR transcription was also robustly induced by arteridin. More importantly, the loss of PSR gene or arteridin protein significantly attenuated the vascular remodeling induced by carotid arterial injury. In addition, VSMC-specific inhibition of lncPSR using adeno-associated virus attenuated Ang II (angiotensin II)-induced hypertensive vascular remodeling. CONCLUSIONS: PSR is a VSMC-enriched gene, and its transcript IncPSR and encoded protein (arteridin) coordinately regulate transcriptional reprogramming through a shared interacting partner, YBX1. This is a previously uncharacterized regulatory circuit in VSMC phenotype switching during vascular remodeling, with lncPSR/arteridin as potential therapeutic targets for the treatment of VSMC phenotype switching-related vascular remodeling.


Assuntos
RNA Longo não Codificante , Angiotensina II/metabolismo , Proliferação de Células/genética , Células Cultivadas , Cromatina/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Remodelação Vascular
9.
J Org Chem ; 89(7): 5189-5199, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38511413

RESUMO

The synthesis of ketones has been a long focus of chemistry research, on account of its unique reactivity. Herein, we report a simple light-driven photocatalyst-free synthesis of ß, δ-functionalized ketones from aldehydes, using inexpensive and commercially abundant feedstock chemicals. This reaction is enabled by the direct acyl radical generation via hydrogen atom transfer and the subsequent radical addition process, avoiding the need for prefunctionalized substrates and organometallic reagent.

10.
Bioorg Chem ; 153: 107842, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39342890

RESUMO

c-MYC is a proto-oncogene ubiquitously overexpressed in various cancers. The formation of G-quadruplex (G4) structures within the c-MYC promoter region can regulate its transcription by interfering with protein binding. Consequently, small molecules targeting c-MYC G4 have emerged as promising anticancer agents. Herein, we report that sanguinarine (SG) and its analogs exhibit a high affinity for c-MYC G4 and potently modulate G4-protein interactions within a natural product library. Notably, SG uniquely enhances NM23-H2 binding to c-MYC G4, both in vitro and in cellular contexts, leading to c-MYC transcriptional repression and subsequent inhibition of cancer cell growth in an NM23-H2-dependent manner. Mechanistic studies and molecular modeling suggest that SG binds to the c-MYC G4/NM23-H2 interface, acting as an orthosteric stabilizer of the DNA-protein complex and preventing c-MYC transcription. Our findings identify SG as a potent c-MYC transcription inhibitor and provide a novel strategy for developing G4-targeting anticancer therapeutics through modulation of G4-protein interactions.

11.
Environ Res ; 243: 117848, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065396

RESUMO

The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3-11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.


Assuntos
Grafite , Nitrilas , Compostos de Nitrogênio , Peróxidos , Grafite/química , Fenol , Fenóis
12.
Graefes Arch Clin Exp Ophthalmol ; 262(5): 1499-1506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38147156

RESUMO

PURPOSE: To investigate the combined association of the ischemic index and leakage index with macular edema on ultra-widefield fluorescein angiography (UWFFA) in patients with branch retinal vein occlusion (BRVO). METHODS: Retrospective image analysis study. The leakage index and ischemic index were calculated using Fiji after aligning early and late UWFFA images. Differences in the ischemic index, leakage index, and central macular thickness (CMT) between ischemic and non-ischemic BRVO were compared. Moreover, the association between the ischemic index, leakage index, and macular edema was analyzed. RESULTS: Eighty-three patients with BRVO were enrolled, including 53 non-ischemic BRVO and 30 ischemic BRVO patients. No significant differences were observed in leakage index and CMT between ischemic BRVO and non-ischemic BRVO (all P > 0.05). In all included patients, CMT correlated with the panretina and all subregion leakage indexes (all P < 0.01), but not with the ischemic index (all P > 0.05). In the ischemic BRVO group, CMT showed a correlation with the leakage index in several regions, but not with the ischemic index. After adjusting for the ischemic index and other clinical features, CMT remained significantly correlated with the leakage index in all regions. CONCLUSION: The leakage index may be a more effective biomarker for monitoring BRVO-associated macular edema compared to the ischemic index. Further follow-up studies are warranted to validate these findings.


Assuntos
Edema Macular , Oclusão da Veia Retiniana , Humanos , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/diagnóstico , Edema Macular/diagnóstico , Edema Macular/etiologia , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos
13.
Nucleic Acids Res ; 50(4): 1829-1848, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166828

RESUMO

DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand-G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.


Assuntos
Antineoplásicos/química , Neoplasias da Mama , Quadruplex G , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Desenho de Fármacos , Feminino , Genes myc , Humanos , Ligantes , Células MCF-7 , Camundongos , Regiões Promotoras Genéticas , Telômero
14.
Inflammopharmacology ; 32(4): 2153-2175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761314

RESUMO

Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Neuralgia , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Humanos , Inibidores de Histona Desacetilases/farmacologia , Animais , Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Qualidade de Vida
15.
Angew Chem Int Ed Engl ; 63(13): e202318632, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38327029

RESUMO

Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.


Assuntos
Lipossomos , Neoplasias , Camundongos , Animais , Lipossomos/química , Bicamadas Lipídicas/química , Biomimética , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química
16.
J Biol Chem ; 298(2): 101487, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915027

RESUMO

In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+ and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homotetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.


Assuntos
Lipídeos , Nanoestruturas , Canais de Potencial de Receptor Transitório , Animais , Microscopia Crioeletrônica , Endossomos/metabolismo , Lipídeos/química , Lisossomos/metabolismo , Mamíferos/metabolismo , Camundongos , Nanoestruturas/química , Canais de Potencial de Receptor Transitório/química
17.
J Org Chem ; 88(3): 1411-1423, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634372

RESUMO

A highly site-selective and Markovnikov-type radical C6-H alkylation of purines with alkenes is achieved, allowing fast construction of the C(sp2)-C(sp3) bond at the C-6-position of purines and purine nucleosides using O2 as a green oxidant and alkenes as cheap alkylation reagents. The route was also a radical route to synthesize C6-alkyl-N7-substituted purines with potential steric hindrance between C6-alkyl groups and N7-substituted groups. This reaction is easily scaled up and has excellent functional group compatibility and broad substrate scopes. Moreover, the unstable intermediate was also separated, which was the key evidence for the reaction mechanism.

18.
J Biochem Mol Toxicol ; 37(6): e23343, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009739

RESUMO

Obesity is a metabolic disease with excess weight. LncRNA SNHG14 is abnormally expressed in numerous diseases. This research aimed to enucleate the lncRNA SNHG14 role in obesity. Adipocytes were treated with free fatty acid (FFA) to establish an in vitro model for obesity. Mice were fed a high-fat diet to construct an in vivo model. Gene levels were determined using quantitative real-time PCR (RT-PCR). The protein level was checked by western blot. The lncRNA SNHG14 role in obesity was assessed using western blot and enzyme-linked immunosorbent assay. The mechanism was estimated by Starbase, dual-luciferase reporter gene assay, and RNA pull-down. LncRNA SNHG14 function in obesity was estimated using mouse xenograft models, RT-PCR, western blot, and enzyme-linked immunosorbent assay. LncRNA SNHG14 and BACE1 levels were increased, but the miR-497a-5p level was decreased in FFA-induced adipocytes. Interference with lncRNA SNHG14 reduced endoplasmic reticulum (ER) stress-related molecules GRP78 and CHOP expressions in FFA-induced adipocytes, and decreased IL-1ß, IL-6, and TNF-α expressions, indicating that lncRNA SNHG14 knockdown mitigated FFA-induced ER stress and inflammation in adipocytes. Mechanistically, lncRNA SNHG14 combined with miR-497a-5p, and miR-497a-5p targeted BACE1. Meanwhile, lncRNA SNHG14 knockdown reduced levels of GRP78, CHOP, IL-1ß, IL-6, and TNF-α, while cotransfection with anti-miR-497a-5p or pcDNA-BACE1 abolished these trends. Rescue assays illustrated that lncRNA SNHG14 knockdown relieved FFA-induced adipocyte ER stress and inflammation through miR-497a-5p/BACE1. Meanwhile, lncRNA SNHG14 knockdown restrained adipose inflammation and ER stress caused by obesity in vivo. LncRNA SNHG14 mediated obesity-induced adipose inflammation and ER stress through miR-497a-5p/BACE1.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chaperona BiP do Retículo Endoplasmático , Secretases da Proteína Precursora do Amiloide/genética , Interleucina-6 , Ácido Aspártico Endopeptidases , Obesidade/genética , Estresse do Retículo Endoplasmático , Inflamação/genética , Apoptose
19.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049899

RESUMO

A general visible light-induced sulfonylation/cyclization to produce quinoline-2,4-diones was achieved under photocatalyst-free conditions. The reactions were performed at room temperature, and various substituents (halogen, alkyl, aryl) and substituted products were obtained with 29 examples within 2 h. Large-scale synthesis and derivatization study via carbonyl reduction to produce easily modified hydroxyl groups and convenient N-Ts deprotection showed the potential utility of this strategy.

20.
Breast Cancer Res ; 24(1): 60, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096830

RESUMO

BACKGROUND: Patients with triple-negative breast cancer (TNBC) often have poorer prognosis than those with other subtypes because of its aggressive behaviors. Cancer cells are heterogeneous, and only a few highly metastatic subclones metastasize. Although the majority of subclones may not metastasize, they could contribute by releasing factors that increase the capacity of highly metastatic cells and/or provide a favorable tumor microenvironment (TME). Here, we analyzed the interclonal communication in TNBC which leads to efficient cancer progression, particularly lung metastasis, using the polyclonal murine 4T1 BC model. METHODS: We isolated two 4T1 subclones, LM.4T1 and HM.4T1 cells with a low and a high metastatic potential, respectively, and examined the effects of LM.4T1 cells on the behaviors of HM.4T1 cells using the cell scratch assay, sphere-forming assay, sphere invasion assay, RT-qPCR, and western blotting in vitro. We also examined the contribution of LM.4T1 cells to the lung metastasis of HM.4T1 cells and TME in vivo. To identify a critical factor which may be responsible for the effects by LM.4T1 cells, we analyzed the data obtained from the GEO database. RESULTS: Co-injection of LM.4T1 cells significantly augmented lung metastases by HM.4T1 cells. LM.4T1-derived exosomes promoted the migration and invasion of HM.4T1 cells in vitro, and blocking the secretion of exosome abrogated their effects on HM.4T1 cells. Analyses of data obtained from the GEO database suggested that Wnt7a might be a critical factor responsible for the enhancing effects. In fact, a higher level of Wnt7a was detected in LM.4T1 cells, especially in exosomes, than in HM.4T1 cells, and deletion of Wnt7a in LM.4T1 cells significantly decreased the lung metastasis of HM.4T1 cells. Further, treatment with Wnt7a increased the spheroid formation by HM.4T1 cells via activation of the PI3K/Akt/mTOR signaling pathway. Finally, infiltration of αSMA-positive fibroblasts and angiogenesis was more prominent in tumors of LM.4T1 cells and deletion of Wnt7a in LM.4T1 cells markedly reduced angiogenesis. CONCLUSIONS: We demonstrated, for the first time, that a low metastatic subclone can enhance lung metastasis of highly metastatic subclone via exosomal Wnt7a and propose Wnt7a as a molecular target to treat TNBC patients.


Assuntos
Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas , Proteínas Wnt/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Neovascularização Patológica , Fosfatidilinositol 3-Quinases , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA